- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这个问题是我之前在这里提出的问题的后续:Multi-feature causal CNN - Keras implementation,但是,我不清楚很多事情,我认为这值得提出一个新问题。这里讨论的模型是根据上面提到的帖子中公认的答案构建的。
我正在尝试对10个具有5个特征的序列的多元时间序列数据应用因果CNN模型。
lookback, features = 10, 5
lookback
? filters = 32
kernel = 5
dilations = 5
dilation_rates = [2 ** i for i in range(dilations)]
model = Sequential()
model.add(InputLayer(input_shape=(lookback, features)))
model.add(Reshape(target_shape=(features, lookback, 1), input_shape=(lookback, features)))
Reshape
之后,现在将5个输入要素视为TimeDistributed层的时间层# Add causal layers
for dilation_rate in dilation_rates:
model.add(TimeDistributed(Conv1D(filters=filters,
kernel_size=kernel,
padding='causal',
dilation_rate=dilation_rate,
activation='elu')))
model.add(Reshape(target_shape=(lookback, features * filters)))
next_dilations = 3
dilation_rates = [2 ** i for i in range(next_dilations)]
for dilation_rate in dilation_rates:
model.add(Conv1D(filters=filters,
kernel_size=kernel,
padding='causal',
dilation_rate=dilation_rate,
activation='elu'))
model.add(MaxPool1D())
model.add(Flatten())
model.add(Dense(units=1, activation='linear'))
model.summary()
lookback, features = 10, 5
filters = 32
kernel = 5
dilations = 5
dilation_rates = [2 ** i for i in range(dilations)]
model = Sequential()
model.add(InputLayer(input_shape=(lookback, features)))
model.add(Reshape(target_shape=(features, lookback, 1), input_shape=(lookback, features)))
# Add causal layers
for dilation_rate in dilation_rates:
model.add(TimeDistributed(Conv1D(filters=filters,
kernel_size=kernel,
padding='causal',
dilation_rate=dilation_rate,
activation='elu')))
model.add(Reshape(target_shape=(lookback, features * filters)))
next_dilations = 3
dilation_rates = [2 ** i for i in range(next_dilations)]
for dilation_rate in dilation_rates:
model.add(Conv1D(filters=filters,
kernel_size=kernel,
padding='causal',
dilation_rate=dilation_rate,
activation='elu'))
model.add(MaxPool1D())
model.add(Flatten())
model.add(Dense(units=1, activation='linear'))
model.summary()
最佳答案
有关给定答案的评论
问题:
- Why are causal layers initially applied independently?
- Why are they applied dependently after reshape?
- Why not apply them dependently from the beginning?
TimeDistributed
层保留独立功能。但是我也不能说它是否能带来更好的结果。起初我会说这是不必要的。但是,它可能带来更多的智能,因为它可能看到关系涉及两个要素之间的遥远步骤,而不是仅仅关注“相同步骤”。 (应该对此进行测试)
model.add(Permute((2,1)))
而不是整形。
LSTM
与
Conv1D
直接比较,并且所使用的形状完全相同,并且实际上含义相同,只要您使用的是
channels_last
即可。
(samples, input_length, features_or_channels)
形状对于
LSTM
和
Conv1D
都是正确的形状。实际上,在这种情况下,功能和 channel 是完全一样的。变化的是每层在输入长度和计算方面的工作方式。
kernel_size
)和
filters
的数量(输出要素)。以及自动输入过滤器。
kernel_size
。内核大小是每个输出步骤将连接多少个长度的步骤。 (此
tutorial非常适合于关于其功能和内核大小的未知2D卷积-想像一下1D图像-尽管本教程未显示“过滤器”的数量,就像1-过滤器动画一样)
filters
的数量与
features
的数量直接相关,它们是完全一样的。
What should filters and kernel be set to?
LSTM
图层正在使用
units=256
,这意味着它将输出256个特征,那么您应该使用
filters=256
,这意味着您的卷积将输出256个 channel /特征。
dilation_rate=1
采用kernel_size
连续的步骤来产生一个步骤。 dilation_rate = 2
的卷积需要例如步骤0、2和4来产生一个步骤。然后采取步骤1、3、5进行下一步,依此类推。 What should dilations be set to to represent lookback of 10?
range = 1 + (kernel_size - 1) * dilation_rate
因此,内核大小= 3:
关于python - 在Keras中实现因果CNN以进行多元时间序列预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56728337/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!