gpt4 book ai didi

使用 R/ggplot 复制数据可视化

转载 作者:行者123 更新时间:2023-12-02 06:28:30 26 4
gpt4 key购买 nike

使用 ggplot2 复制我在打印媒体上看到的可视化效果

上下文:
我一直在寻求使数据可视化更具吸引力/美感,特别是针对非数据人员,他们是我共事的大多数人(利益相关者,如营销人员、管理人员等)——我注意到当可视化看起来像学术时——出版质量(标准 ggplot2 美学)他们倾向于假设他们不能理解它并且懒得尝试,首先打败了可视化的全部目的。然而,当它看起来更形象时(就像您可能在网站或营销 Material 上看到的东西),他们会集中注意力并尝试理解可视化,通常会成功。通常我们会在这些类型的可视化中进行最有趣的讨论,所以这是我的最终目标。

可视化: The vis I'd like to replicate in R/ggplot2

这是我在一些营销手册上看到的关于按地理位置划分的设备网络流量份额的内容,虽然它实际上有点忙和不清楚,但它比我在标准中创建的类似堆叠条形图更能引起共鸣——我有一点也不知道我如何在 ggplot2 中复制这样的东西,任何尝试都将不胜感激!下面是一些要在 data.table 中使用的整洁数据示例:

structure(list(country = c("Argentina", "Argentina", "Argentina", 
"Brazil", "Brazil", "Brazil", "Canada",
"Canada", "Canada", "China", "China",
"China", "Japan", "Japan", "Japan", "Spain",
"Spain", "Spain", "UK", "UK", "UK", "USA",
"USA", "USA"),
device_type = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L),
class = "factor",
.Label = c("desktop",
"mobile",
"multi")),
proportion = c(0.37, 0.22, 0.41, 0.3, 0.31, 0.39,
0.35, 0.06, 0.59, 0.19, 0.2, 0.61,
0.4, 0.18, 0.42, 0.16, 0.28, 0.56,
0.27, 0.06, 0.67, 0.37, 0.08, 0.55)),
.Names = c("country", "device_type", "proportion"),
row.names = c(NA, -24L),
class = c("data.table", "data.frame"))

最佳答案

您还可以考虑 googleVis

library(googleVis)

dat <- structure(list(country = c("Argentina", "Argentina", "Argentina",
"Brazil", "Brazil", "Brazil", "Canada",
"Canada", "Canada", "China", "China",
"China", "Japan", "Japan", "Japan", "Spain",
"Spain", "Spain", "UK", "UK", "UK", "USA",
"USA", "USA"),
device_type = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L, 3L, 1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L,
1L, 2L, 3L),
class = "factor",
.Label = c("desktop",
"mobile",
"multi")),
proportion = c(0.37, 0.22, 0.41, 0.3, 0.31, 0.39,
0.35, 0.06, 0.59, 0.19, 0.2, 0.61,
0.4, 0.18, 0.42, 0.16, 0.28, 0.56,
0.27, 0.06, 0.67, 0.37, 0.08, 0.55)),
.Names = c("country", "device_type", "proportion"),
row.names = c(NA, -24L),
class = c("data.table", "data.frame"))

link_order <- unique(dat$country)
node_order <- unique(as.vector(rbind(dat$country, as.character(dat$device_type))))

link_cols <- data.frame(color = c('#ffd1ab', '#ff8d14', '#ff717e', '#dd2c40', '#d6b0ea',
'#8c4fab','#00addb','#297cbe'),
country = c("UK", "Canada", "USA", "China", "Spain", "Japan", "Argentina", "Brazil"),
stringsAsFactors = F)

node_cols <- data.frame(color = c("#ffc796", "#ff7100", "#ff485b", "#d20000",
"#cc98e6", "#6f2296", "#009bd2", "#005daf",
"grey", "grey", "grey"),
type = c("UK", "Canada", "USA", "China", "Spain", "Japan",
"Argentina", "Brazil", "multi", "desktop", "mobile"))

link_cols2 <- sapply(link_order, function(x) link_cols[x == link_cols$country, "color"])
node_cols2 <- sapply(node_order, function(x) node_cols[x == node_cols$type, "color"])

actual_link_cols <- paste0("[", paste0("'", link_cols2,"'", collapse = ','), "]")
actual_node_cols <- paste0("[", paste0("'", node_cols2,"'", collapse = ','), "]")

opts <- paste0("{
link: { colorMode: 'source',
colors: ", actual_link_cols ," },
node: {colors: ", actual_node_cols ,"}}")

Sankey <- gvisSankey(dat,
from = "country",
to = "device_type",
weight = "proportion",
options = list(height = 500, width = 1000, sankey = opts))


plot(Sankey)

enter image description here

关于使用 R/ggplot 复制数据可视化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48118547/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com