作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我只想裁剪框或矩形内的图像。我尝试了很多方法但没有任何效果。
import cv2
import numpy as np
img = cv2.imread("C:/Users/hp/Desktop/segmentation/add.jpeg", 0);
h, w = img.shape[:2]
# print(img.shape)
kernel = np.ones((3,3),np.uint8)
img2 = img.copy()
img2 = cv2.medianBlur(img2,5)
img2 = cv2.adaptiveThreshold(img2,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,11,2)
img2 = 255 - img2
img2 = cv2.dilate(img2, kernel)
img2 = cv2.medianBlur(img2, 9)
img2 = cv2.medianBlur(img2, 9)
cv2.imshow('anything', img2)
cv2.waitKey(0)
cv2.destroyAllWindows()
position = np.where(img2 !=0)
x0 = position[0].min()
x1 = position[0].max()
y0 = position[1].min()
y1 = position[1].max()
print(x0,x1,y0,y1)
result = img[x0:x1,y0:y1]
cv2.imshow('anything', result)
cv2.waitKey(0)
cv2.destroyAllWindows()
输出应该是正方形内的图像。
最佳答案
您可以使用轮廓检测来实现此目的。如果您的图像基本上只有一个手绘矩形,我认为假设它是图像中最大的闭合轮廓就足够了。从该轮廓,我们可以计算出多边形/四边形近似值,然后最终得到近似矩形。我将在开始时定义一些实用程序,我通常使用这些实用程序来让我在处理图像时更轻松:
def load_image(filename):
return cv2.imread(filename)
def bnw(image):
return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
def col(image):
return cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
def fixrgb(image):
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
def show_image(image, figsize=(7,7), cmap=None):
cmap = cmap if len(image.shape)==3 else 'gray'
plt.figure(figsize=figsize)
plt.imshow(image, cmap=cmap)
plt.show()
def AdaptiveThresh(gray):
blur = cv2.medianBlur(gray, 5)
adapt_type = cv2.ADAPTIVE_THRESH_GAUSSIAN_C
thresh_type = cv2.THRESH_BINARY_INV
return cv2.adaptiveThreshold(blur, 255, adapt_type, thresh_type, 11, 2)
def get_rect(pts):
xmin = pts[:,0,1].min()
ymin = pts[:,0,0].min()
xmax = pts[:,0,1].max()
ymax = pts[:,0,0].max()
return (ymin,xmin), (ymax,xmax)
让我们加载图像并将其转换为灰度:
image_name = 'test.jpg'
image_original = fixrgb(load_image(image_name))
image_gray = 255-bnw(image_original)
show_image(image_gray)
使用一些变形操作来增强图像:
kernel = np.ones((3,3),np.uint8)
d = 255-cv2.dilate(image_gray,kernel,iterations = 1)
show_image(d)
找到边缘并增强/去噪:
e = AdaptiveThresh(d)
show_image(e)
m = cv2.dilate(e,kernel,iterations = 1)
m = cv2.medianBlur(m,11)
m = cv2.dilate(m,kernel,iterations = 1)
show_image(m)
轮廓检测:
contours, hierarchy = cv2.findContours(m, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
total_area = np.prod(image_gray.shape)
max_area = 0
for cnt in contours:
# Simplify contour
perimeter = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.03 * perimeter, True)
area = cv2.contourArea(approx)
# Shape is recrangular, so 4 points approximately and it's convex
if (len(approx) == 4 and cv2.isContourConvex(approx) and max_area<area<total_area):
max_area = cv2.contourArea(approx)
quad_polygon = approx
img1 = image_original.copy()
img2 = image_original.copy()
cv2.polylines(img1,[quad_polygon],True,(0,255,0),10)
show_image(img1)
tl, br = get_rect(quad_polygon)
cv2.rectangle(img2, tl, br, (0,255,0), 10)
show_image(img2)
这样你就可以看到近似的多边形和相应的矩形,用它你可以得到你的裁剪。我建议你尝试一下中值模糊和形态学操作,如腐 eclipse 、膨胀、打开、关闭等,看看哪一组操作最适合你的图像;仅凭一张图片我无法真正说出什么是好的。您可以使用左上角和右下角坐标进行裁剪:
show_image(image_original[tl[1]:br[1],tl[0]:br[0],:])
关于python - 有什么办法可以裁剪框内的图像吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61754432/
我是一名优秀的程序员,十分优秀!