- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在寻找返回 R 中 anova 模型的 de Rsquared 的方法/函数。
到目前为止找不到任何东西。
谢谢
最佳答案
tl;dr:您可以通过查看相应线性模型的汇总输出来获得方差分析的 R 平方
让我们一步步来:
1) 让我们使用来自 here 的数据
pain <- c(4, 5, 4, 3, 2, 4, 3, 4, 4, 6, 8, 4, 5, 4, 6, 5, 8, 6, 6, 7, 6, 6, 7, 5, 6, 5, 5)
drug <- c(rep("A", 9), rep("B", 9), rep("C", 9))
migraine <- data.frame(pain, drug)
2) 让我们获取方差分析:
AOV <- aov(pain ~ drug, data=migraine)
summary(AOV)
## Df Sum Sq Mean Sq F value Pr(>F)
## drug 2 28.22 14.111 11.91 0.000256 ***
## Residuals 24 28.44 1.185
## ---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
3) 现在,anova 与线性模型直接相关,所以让我们得到它并从中找到 anova:
LM <- lm(pain ~ drug, data=migraine)
anova(LM)
## Analysis of Variance Table
##
## Response: pain
## Df Sum Sq Mean Sq F value Pr(>F)
## drug 2 28.222 14.1111 11.906 0.0002559 ***
## Residuals 24 28.444 1.1852
## ---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
不出所料,结果完全一样。这意味着……
3) 我们可以从线性模型中得到 R 平方:
summary(LM)
## Call:
## lm(formula = pain ~ drug, data = migraine)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7778 -0.7778 0.1111 0.3333 2.2222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6667 0.3629 10.104 4.01e-10 ***
## drugB 2.1111 0.5132 4.114 0.000395 ***
## drugC 2.2222 0.5132 4.330 0.000228 ***
## ---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
## Residual standard error: 1.089 on 24 degrees of freedom
## Multiple R-squared: 0.498, Adjusted R-squared: 0.4562
## F-statistic: 11.91 on 2 and 24 DF, p-value: 0.0002559
所以 R 平方是 0.498
但如果我们不相信呢?
4) 什么是 R 平方?它是回归平方和除以总平方和(即回归平方和加上残差平方和)。因此,让我们在方差分析中找到这些数字并直接计算 R 平方:
# We use the tidy function from the broom package to extract values
library(broom)
tidy_aov <- tidy(AOV)
tidy_aov
## term df sumsq meansq statistic p.value
## 1 drug 2 28.22222 14.111111 11.90625 0.0002558807
## 2 Residuals 24 28.44444 1.185185 NA NA
# The values we need are in the sumsq column of this data frame
sum_squares_regression <- tidy_aov$sumsq[1]
sum_squares_residuals <- tidy_aov$sumsq[2]
R_squared <- sum_squares_regression /
(sum_squares_regression + sum_squares_residuals)
R_squared
## 0.4980392
所以我们得到相同的结果:R 平方是 0.4980392
关于r - 如何从 R 中的方差分析中获取 rsquare,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45461298/
我的应用程序上有一个抽屉式菜单,它在桌面上运行良好,但在任何移动设备上我都看到一个丑陋的卡顿。 在 header 中,我有一个 bool 值,在单击汉堡包时将其设置为 true/false,这会将 o
在CLRS书中,自上而下的heapify构建堆的复杂度为O(n)。也可以通过反复调用插入来建立堆,其最坏情况下的复杂度为nlg(n)。 我的问题是:对于后一种方法性能较差的原因,是否有任何见解? 我问
我在所有层和输出上使用 sigmoid,得到的最终错误率为 0.00012,但是当我使用理论上更好的 Relu 时,我得到了最差的结果。谁能解释为什么会发生这种情况?我正在使用一个非常简单的 2 层实
我想计算有多少人(百分比)在我的测试中表现比我差。 这是我想要的结果: student | vak | resultaat | percentielscore ---------+-------
令人惊讶的是,使用 PLINQ 并没有在我创建的一个小测试用例上产生好处;事实上,它比通常的 LINQ 还要糟糕。 测试代码如下: int repeatedCount = 10000000;
我正在开发一个高度基于 map 的应用程序,并且我正在使用 MBXMapKit 框架(基于 MapKit 构建)以便在我的 MapView 中显示自定义 Mapbox map 图 block 而不是默
这个问题在这里已经有了答案: Is it always better to use 'DbContext' instead of 'ObjectContext'? (1 个回答) 关闭 9 年前。
我正在尝试使用 FFmpeg 进行一些复杂的视频转码(例如连接多个文件)。为此,我一直在尝试使用 filter_complex,但我注意到我之前使用普通视频过滤器看到的质量略有下降。 为了仔细检查,我
我是 R 中并行计算的新手,想使用并行包来加速我的计算(这比下面的示例更复杂)。但是,与通常的 lapply 函数相比,使用 mclapply 函数的计算时间更长。 我在我的笔记本电脑上安装了一个全新
我正在尝试使用 BERT 解决文档排名问题。我的任务很简单。我必须对输入文档进行相似度排名。这里唯一的问题是我没有标签——所以它更像是一个定性分析。 我正在尝试一系列文档表示技术——主要是 word2
如何计算两点的差?例如:(5,7) - (2,3) = (3,4) using point = boost::geometry::model::point point p1 (2, 3); point
我是 ARKit 的新手,在检查了一些示例代码后,如 https://developer.apple.com/sample-code/wwdc/2017/PlacingObjects.zip我想知道是
社区。 我正在编写一些机器学习代码,将一些数据分类。 我尝试了不同的方法,但是当我使用SVM时,我遇到了这个问题。 我有一组简单的数据(3 个类别,6 个特征),当我使用具有固定参数(C=10、gam
我只是在查看不同问题的答案以了解更多信息。我看到一个answer这表示在 php 中编写 是不好的做法 for($i=0;$i
我正在编写一个界面,我必须在其中启动 4 个 http 请求才能获取一些信息。 我用两种方式实现了接口(interface): 使用顺序 file_get_contents。 使用多 curl 。 我
我想用随机数来愚弄一下,如果 haskell 中的随机生成器是否均匀分布,因此我在几次尝试后写了下面的程序(生成的列表导致堆栈溢出)。 module Main where import System.
我在 Tensorflow 中构建了一个 LSTM 分类器(使用 Python),现在我正在做一系列基准测试来衡量执行性能。基准测试代码加载在训练期间保存的模型并针对大量输入执行它。我有一个 Pyth
不久前,我重构了单元格渲染器组件以实现性能提升(我有一个巨大的表格)。我从功能性无状态组件重构为 PureComponent。例如: import React from 'react'; import
当我改变缓冲区的大小时,我得到了无法从 BufferedReader 解释的奇怪结果。 我曾强烈期望性能会随着缓冲区大小的增加而逐渐增加, yield 递减设置相当快,此后性能或多或少会持平。但看起来
我正在尝试为 1000 个正面+负面标签的 IMDB 评论 (txt_sentoken) 和 Java 的 weka API 构建一个基于朴素贝叶斯的分类器。 由于我不知道 StringToWordV
我是一名优秀的程序员,十分优秀!