- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在致力于在 Python 中实现稀疏未定系统的求解器(已讨论 here ),并且我正在尝试重建使用标准 numpy svd 函数的零空间函数(numpy.linalg.svd
) 在 SciPy cookbook 中使用 svd 的 scipy.sparse 版本(scipy.sparse.linalg.svds
),但它为我运行的示例输出不同的左右奇异向量 - 包括矩阵:
[[1,1,0,0,0],[0,0,1,1,0],[1,1,1,1,1]]
[[1,0,1],[1,1,0],[0,1,1]]
为什么这两个求解器会为上面的矩阵产生两个不同的 svd 输出?我该怎么做才能确保相同的输出?
这是一个示例:table 是一个 csc_matrix
,使得
table.todense() = matrix([[1,1,0,0,0],[0,0,1,1,0],[1,1,1,1,1]],dtype=int64)
因此,以下代码输出
numpy.linalg.svd(table.todense()) =
[[ -3.64512933e-01 7.07106781e-01 -6.05912800e-01]
[ -3.64512933e-01 -7.07106781e-01 -6.05912800e-01]
[ -8.56890100e-01 2.32635116e-16 5.15499134e-01]]
-----------------------------------------------------
[ 2.58873755 1.41421356 0.54629468]
-----------------------------------------------------
[[ -4.7181e-01 -4.7181e-01 -4.7181e-01 -4.7181e-01 -3.3101e-01]
[5e-01 5e-01 -5e-01 -5e-01 6.16450329e-17]
[-1.655e-01 -1.655e-01 -1.655e-01 -1.655e-01 9.436e-01]
[5e-01 -5e-01 -5e-01 5e-01 -1.77302319e-16]
[-5e-01 5e-01 -5e-01 5e-01 2.22044605e-16]]
以及以下
scipy.sparse.linalg.svds(table,k=2)=
[[ 7.07106781e-01, -3.64512933e-01],
[ -7.07106781e-01, -3.64512933e-01],
[ 2.73756255e-18, -8.56890100e-01]]
-------------------------------------
[ 1.41421356, 2.58873755]
-------------------------------------
[[ 5e-01, 5e-01, -5e-01, -5e-01, 1.93574904e-18],
[ -4.71814e-01, -4.71814e-01, -4.71814e-01, -4.71814e-01, -3.31006e-01]]
请注意,两个解决方案之间有相当多的值重叠。另外,scipy.sparse.linalg.svds
函数不允许k大于或等于min(table.shape)
,这就是我选择k的原因=2。
最佳答案
您发布的问题中的输出对我来说看起来不错。在 numpy 调用中,您计算每个奇异值,在 scipy 代码中,您仅计算前 k 个奇异值,并且它们与 numpy 输出中的前 k 个匹配。
稀疏 top k svd 不会让你计算每个奇异值,因为如果你想这样做,那么你可以使用完整的 svd 函数。
下面我提供了代码供您自行检查。需要注意的是,虽然 numpy 和 scipy full svd 都可以很好地重新创建原始矩阵,但前 k svd 却不能。这是因为您正在丢弃数据。通常情况下,只要你们距离足够近就可以了,这样就可以了。问题是 SVD 如果与 top k 一起使用,可以用作原始矩阵的低秩近似,而不是替代。
为了清楚起见,我在这方面的经验来自于为原作者A Sparse Plus Low-Rank Exponential Language Model for Limited Resource Scenarios实现本文的Python并行版本。 .
import numpy as np
from scipy import linalg
from scipy.sparse import linalg as slinalg
x = np.array([[1,1,0,0,0],[0,0,1,1,0],[1,1,1,1,1]],dtype=np.float64)
npsvd = np.linalg.svd(x)
spsvd = linalg.svd(x)
sptop = slinalg.svds(x,k=2)
print "np"
print "u: ", npsvd[0]
print "s: ", npsvd[1]
print "v: ", npsvd[2]
print "\n=========================\n"
print "sp"
print "u: ", spsvd[0]
print "s: ", spsvd[1]
print "v: ", spsvd[2]
print "\n=========================\n"
print "sp top k"
print "u: ", sptop[0]
print "s: ", sptop[1]
print "v: ", sptop[2]
nptmp = np.zeros((npsvd[0].shape[1],npsvd[2].shape[0]))
nptmp[np.diag_indices(np.min(nptmp.shape))] = npsvd[1]
npreconstruct = np.dot(npsvd[0], np.dot(nptmp,npsvd[2]))
print npreconstruct
print "np close? : ", np.allclose(npreconstruct, x)
sptmp = np.zeros((spsvd[0].shape[1],spsvd[2].shape[0]))
sptmp[np.diag_indices(np.min(sptmp.shape))] = spsvd[1]
spreconstruct = np.dot(spsvd[0], np.dot(sptmp,spsvd[2]))
print spreconstruct
print "sp close? : ", np.allclose(spreconstruct, x)
sptoptmp = np.zeros((sptop[0].shape[1],sptop[2].shape[0]))
sptoptmp[np.diag_indices(np.min(sptoptmp.shape))] = sptop[1]
sptopreconstruct = np.dot(sptop[0], np.dot(sptoptmp,sptop[2]))
print sptopreconstruct
print "sp top close? : ", np.allclose(sptopreconstruct, x)
关于python - Numpy svd 与 Scipy.sparse svds,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50884533/
SciPy 和 Numpy 都内置了奇异值分解 (SVD) 函数。命令基本上是 scipy.linalg.svd 和 numpy.linalg.svd。这两者有什么区别?它们中的任何一个都比另一个更好
numpy.linalg.svd 函数给出输入矩阵的完整 svd。但是我只想要第一个奇异向量。 我想知道在 numpy 中是否有任何函数用于那个或 python 中的任何其他库? 最佳答案 一种可能是
代码: import numpy from matplotlib.mlab import PCA file_name = "store1_pca_matrix.txt" ori_data = nump
我在学习SVD通过关注这个 MIT course . 矩阵构造为 C = np.matrix([[5,5],[-1,7]]) C matrix([[ 5, 5], [-1, 7]]
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 9
我想计算 SVD ,但我没有找到合适的 java 库。现在,我在 hashmap 中存储了数据,因为矩阵不适合内存,因为大小约为 400 000 X 10 000 并且大多数为 0。我尝试了 MTJ、
运行以下代码: from sklearn.decomposition import TruncatedSVD import numpy as np X = np.matrix('1 2 3 4 5;
给定一个实数矩阵 A 使得: A 是对称的 所有非对角线项都是已知且正的 所有对角线项都缺失 排名k 我想找到 A 的最佳可能完成,称为 Ac,这样(大约)rank(Ac)=k。 矩阵 A 可能很大(
我正在寻找一个执行维基百科中描述的奇异值分解的 Java 库:从矩阵 A (m X n) 得到 A = U*S*V' 其中 U 是 m x m,S 是 m x n,V 是n x n. 谁能帮帮我? 请
我正在尝试学习用于图像处理的 SVD...例如压缩。 我的方法:使用 ImageIO 获取图像作为 BufferedImage...获取 RGB 值并使用它们获取等效的灰度值(在 0-255 范围内)
我必须在 Matlab 中使用 SVD 来获得数据的简化版本。我读到函数 svds(X,k) 执行 SVD 并返回前 k 个特征值和特征向量。如果必须规范化数据,文档中没有提及。对于归一化,我指的是减
我已经使用 SVD 找到了两组点之间的旋转矩阵。我知道 R = Transpose(U) * V 但我不明白 U 和 V 代表什么以及为什么这种乘法会产生旋转矩阵。 最佳答案 由于您的问题是理论性的并
我正在尝试在名为“LSA 简介”的论文中复制一个示例: An introduction to LSA 在示例中,它们具有以下术语-文档矩阵: 然后他们应用 SVD 并得到以下结果: 试图复制这一点,我
我正在使用带有 R 的 SVD 包,我能够通过将最低奇异值替换为 0 来降低矩阵的维数。但是当我重新组合矩阵时,我仍然拥有相同数量的特征,我找不到如何有效地删除源矩阵中最无用的特征,以减少其列数。 例
我想编写一个函数,它使用 SVD 分解来求解方程组 ax=b,其中 a 是一个方阵,b 是一个值向量。 scipy 函数 scipy.linalg.svd() 应该将 a 转换为矩阵 U W V。对于
我在 R 中有一个稀疏矩阵,它显然太大了,无法在其上运行 as.matrix()(尽管它也不是 super 大)。有问题的 as.matrix() 调用位于 svd() 函数内部,所以我想知道是否有人
我正在尝试使用 bcv 包中的 SVD 插补,但所有插补值都是相同的(按列)。 这是缺少数据的数据集 http://pastebin.com/YS9qaUPs #load data dataMiss
我有这个数组 double a[][] = {{1,1,1}, {0,1,1} , { 1,0,0} ,{0,1,0},{1,0,0},{1,0,1},{1,1,1},{1,1,1},
我们现在知道A_(m x n) = U_(m x k) * S_(k x k) * V_(k x n)^T = u_(1) * s_1 * v_(1) + u_(2) * s_2 * v_(2) +
我必须对矩阵进行 SVD,但它有一些错误,在下面的示例中 U[1][1]、U[2][1] 和 U[2][0] 应为 0。 问题是,上面的例子只是一个测试,我必须使用条件不太好的大型矩阵,我该怎么做才能
我是一名优秀的程序员,十分优秀!