- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在创建一个聊天机器人,它可以根据用户查询查询数据库中的所有“ View ”。我尝试了很多其他方法但没有成功,所以现在我想我应该尝试OpenAI的函数调用。
我做了什么:我为其中一个 View 创建了一个函数。其中,我调用 GPT3 根据我在参数中提供的用户问题创建 SQL 查询。我已经为模型提供了说明和架构,以便它可以创建正确的查询。下面是该函数。
def get_rent_details(user_query):
"""Get the current weather in a given location"""
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
prompt="""User will ask you the question regarding their properties, assets and finance.
Follow below steps to get correct answer:
1. Understand the user question and prepare a syntactically correct SQL query to retrieve the correct data.
2. If you don't find the data in the table, just type "No answer found".
3. Do not make up any answer by your own.
4. Instead of '=', always use 'LIKE' statement with 'WHERE' statement.
5. The user will mention either property name or tenant name. So to make sure the query is correct, use both columns 'TenantName' and 'PropertyName' with 'WHERE' statement. For example: SELECT PropertyCode FROM viewRentRoll WHERE PropertyName LIKE 'Younger, 3003' OR TenantName LIKE 'Younger, 3003'.
6. DO NOT create any DML query like UPDATE, INSERT, DELETE, ADD.
7. Below is the table schema to run query on:
CREATE TABLE [dbo].[viewRentRoll] (
[PropertyPKId] [bigint]
,[PropertyCode] [nvarchar]
,[PropertyName] [nvarchar]
,[PropertyList] [nvarchar]
,[LeaseCode] [nvarchar]
,[TenantName] [nvarchar]
,[SnP Rating] [nvarchar]
,[Unit Number] [nvarchar]
,[Lease Status] [nvarchar]
,[Lease Start Date] [datetime]
,[Lease Expiration Date] [datetime]
,[Unit Square Feet] [bigint]
,[Remaining Lease Term] [bigint]
,[Currently Monthly Base Rent] [bigint]
,[Rent PSF] [bigint]
,[ABR] [bigint]
,[local tenant] [nvarchar]
,[Current Annualized Base Rent PSF] [bigint]
,[CreatedLeaseExpirationDate] [datetime]
,[TenantCategory] [nvarchar]
)
""" + user_query,
max_tokens=200,
temperature=0,
)
return (response['choices'][0]['text'])
我正在考虑为每个 View 创建这样的函数。之后,我从 OpenAI 函数调用文档中获取了代码,并根据我的需要对其进行了修改。下面是“函数调用”函数:
def run_conversation(user_query):
# Step 1: send the conversation and available functions to GPT
print("Running run_conversion............\n\n")
messages = [{"role": "user", "content": user_query}]
functions = [
{
"name": "get_rent_details",
"description": "Get the details of rent of tenants or properties",
"parameters": {
"type": "object",
"user_query" : {
"type" : "string",
"description" : "User's question regarding the rent of Tenant or properties"
}
}
}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
functions=functions,
function_call="auto", # auto is default, but we'll be explicit
)
response_message = response["choices"][0]["message"]
# Step 2: check if GPT wanted to call a function
if response_message.get("function_call"):
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_rent_details": get_rent_details,
} # only one function in this example, but you can have multiple
function_name = response_message["function_call"]["name"]
fuction_to_call = available_functions[function_name]
function_args = json.loads(response_message["function_call"]["arguments"])
function_response = fuction_to_call(
user_query=function_args.get("user_query"),
)
# Step 4: send the info on the function call and function response to GPT
messages.append(response_message) # extend conversation with assistant's reply
messages.append(
{
"role": "function",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
second_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
) # get a new response from GPT where it can see the function response
return second_response
这是我第一次尝试函数调用,所以我不能百分百确定这是否有效。当我运行此代码时,我收到此错误:openai.error.InvalidRequestError: <exception str() failed>
对于 response = openai.ChatCompletion.create()
在run_conversation(user_query)
功能。
任何人都可以指导我哪里犯了错误吗?
我在下面提供完整的代码:
import openai
import json
import os
user_query = "What is the monthly rent of Good Neighbor Homes, Inc."
openai.api_key=os.environ['OPENAI_API_KEY']
def run_conversation(user_query):
# Step 1: send the conversation and available functions to GPT
print("Running run_conversion............\n\n")
messages = [{"role": "user", "content": user_query}]
functions = [
{
"name": "get_rent_details",
"description": "Get the details of rent of tenants or properties",
"parameters": {
"type": "object",
"user_query" : {
"type" : "string",
"description" : "User's question regarding the rent of Tenant or properties"
}
}
}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
functions=functions,
function_call="auto", # auto is default, but we'll be explicit
)
response_message = response["choices"][0]["message"]
# Step 2: check if GPT wanted to call a function
if response_message.get("function_call"):
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_rent_details": get_rent_details,
}
function_name = response_message["function_call"]["name"]
fuction_to_call = available_functions[function_name]
function_args = json.loads(response_message["function_call"]["arguments"])
function_response = fuction_to_call(
user_query=function_args.get("user_query"),
)
# Step 4: send the info on the function call and function response to GPT
messages.append(response_message) # extend conversation with assistant's reply
messages.append(
{
"role": "function",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
second_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
messages=messages,
) # get a new response from GPT where it can see the function response
return second_response
def get_rent_details(user_query):
"""Get the current weather in a given location"""
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo-0613",
prompt="""User will ask you the question regarding their properties, assets and finance.
Follow below steps to get correct answer:
1. Understand the user question and prepare a syntactically correct SQL query to retrieve the correct data.
2. If you don't find the data in the table, just type "No answer found".
3. Do not make up any answer by your own.
4. Instead of '=', always use 'LIKE' statement with 'WHERE' statement.
5. The user will mention either property name or tenant name. So to make sure the query is correct, use both columns 'TenantName' and 'PropertyName' with 'WHERE' statement. For example: SELECT PropertyCode FROM viewRentRoll WHERE PropertyName LIKE 'Younger, 3003' OR TenantName LIKE 'Younger, 3003'.
6. DO NOT create any DML query like UPDATE, INSERT, DELETE, ADD.
7. Below is the table schema to run query on:
CREATE TABLE [dbo].[viewRentRoll] (
[PropertyPKId] [bigint]
,[PropertyCode] [nvarchar]
,[PropertyName] [nvarchar]
,[PropertyList] [nvarchar]
,[LeaseCode] [nvarchar]
,[TenantName] [nvarchar]
,[SnP Rating] [nvarchar]
,[Unit Number] [nvarchar]
,[Lease Status] [nvarchar]
,[Lease Start Date] [datetime]
,[Lease Expiration Date] [datetime]
,[Unit Square Feet] [bigint]
,[Remaining Lease Term] [bigint]
,[Currently Monthly Base Rent] [bigint]
,[Rent PSF] [bigint]
,[ABR] [bigint]
,[local tenant] [nvarchar]
,[Current Annualized Base Rent PSF] [bigint]
,[CreatedLeaseExpirationDate] [datetime]
,[TenantCategory] [nvarchar]
)
"""+user_query+"?",
max_tokens=200,
temperature=0,
)
print(response['choices'][0]['text'])
return (response['choices'][0]['text'])
run_conversation(user_query)
最佳答案
尝试将函数修改为如下所示:
{
"name": "get_rent_details",
"description": "Get the details of rent of tenants or properties",
"parameters": {
"type": "object",
"properties": {
"user_query": {
"type": "string",
"description": "User's question regarding the rent of Tenant or properties"
}
},
"required": ["user_query"]
}
}
即添加属性
和必需
。
我面临着类似的问题,对我有用的是从我验证过的官方 Open AI 功能开始,然后我逐行修改它以验证没有任何更改会破坏它。我错过了必需的属性之一。
我还为自己构建了一个验证函数,以检查我将来是否仅将有效函数传递给 Open AI。它并不完美,但已经帮助我发现了一些错误。
def validate_function(function):
# example func
"""
function = {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
"""
# Check the presence of required keys and their types
assert "name" in function and isinstance(
function["name"], str
), "'name' must be a string."
assert "description" in function and isinstance(
function["description"], str
), "'description' must be a string."
assert "parameters" in function and isinstance(
function["parameters"], dict
), "'parameters' must be a dictionary."
# Check the structure of 'parameters' key
params = function["parameters"]
assert (
"type" in params and params["type"] == "object"
), "'type' must be 'object' in parameters."
assert "properties" in params and isinstance(
params["properties"], dict
), "'properties' must be a dictionary."
assert "required" in params and isinstance(
params["required"], list
), "'required' must be a list."
# Check the structure of 'properties' in 'parameters'
for key, prop in params["properties"].items():
assert "type" in prop and isinstance(
prop["type"], str
), f"'type' must be a string in properties of {key}."
if prop["type"] == "array":
assert (
"items" in prop
), f"'items' must be present in properties of {key} when type is 'array'."
# Enum check only if it exists
if "enum" in prop:
assert isinstance(
prop["enum"], list
), f"'enum' must be a list in properties of {key}."
# Check 'required' properties are in 'properties'
for key in params["required"]:
assert (
key in params["properties"]
), f"'{key}' mentioned in 'required' must exist in 'properties'."
关于artificial-intelligence - OpenAI函数调用错误----openai.error.InvalidRequestError : <exception str() failed>,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/76661527/
为了让我的代码几乎完全用 Jquery 编写,我想用 Jquery 重写 AJAX 调用。 这是从网页到 Tomcat servlet 的调用。 我目前情况的类似代码: var http = new
我想使用 JNI 从 Java 调用 C 函数。在 C 函数中,我想创建一个 JVM 并调用一些 Java 对象。当我尝试创建 JVM 时,JNI_CreateJavaVM 返回 -1。 所以,我想知
环顾四周,我发现从 HTML 调用 Javascript 函数的最佳方法是将函数本身放在 HTML 中,而不是外部 Javascript 文件。所以我一直在网上四处寻找,找到了一些简短的教程,我可以根
我有这个组件: import {Component} from 'angular2/core'; import {UserServices} from '../services/UserService
我正在尝试用 C 实现一个简单的 OpenSSL 客户端/服务器模型,并且对 BIO_* 调用的使用感到好奇,与原始 SSL_* 调用相比,它允许一些不错的功能。 我对此比较陌生,所以我可能会完全错误
我正在处理有关异步调用的难题: 一个 JQuery 函数在用户点击时执行,然后调用一个 php 文件来检查用户输入是否与数据库中已有的信息重叠。如果是这样,则应提示用户确认是否要继续或取消,如果他单击
我有以下类(class)。 public Task { public static Task getInstance(String taskName) { return new
嘿,我正在构建一个小游戏,我正在通过制作一个数字 vector 来创建关卡,该数字 vector 通过枚举与 1-4 种颜色相关联。问题是循环(在 Simon::loadChallenge 中)我将颜
我有一个java spring boot api(数据接收器),客户端调用它来保存一些数据。一旦我完成了数据的持久化,我想进行另一个 api 调用(应该处理持久化的数据 - 数据聚合器),它应该自行异
首先,这涉及桌面应用程序而不是 ASP .Net 应用程序。 我已经为我的项目添加了一个 Web 引用,并构建了各种数据对象,例如 PayerInfo、Address 和 CreditCard。但问题
我如何告诉 FAKE 编译 .fs文件使用 fsc ? 解释如何传递参数的奖励积分,如 -a和 -target:dll . 编辑:我应该澄清一下,我正在尝试在没有 MSBuild/xbuild/.sl
我使用下划线模板配置了一个简单的主干模型和 View 。两个单独的 API 使用完全相同的配置。 API 1 按预期工作。 要重现该问题,请注释掉 API 1 的 URL,并取消注释 API 2 的
我不确定什么是更好的做法或更现实的做法。我希望从头开始创建目录系统,但不确定最佳方法是什么。 我想我在需要显示信息时使用对象,例如 info.php?id=100。有这样的代码用于显示 Game.cl
from datetime import timedelta class A: def __abs__(self): return -self class B1(A):
我在操作此生命游戏示例代码中的数组时遇到问题。 情况: “生命游戏”是约翰·康威发明的一种细胞自动化技术。它由一个细胞网格组成,这些细胞可以根据数学规则生存/死亡/繁殖。该网格中的活细胞和死细胞通过
如果我像这样调用 read() 来读取文件: unsigned char buf[512]; memset(buf, 0, sizeof(unsigned char) * 512); int fd;
我用 C 编写了一个简单的服务器,并希望调用它的功能与调用其他 C 守护程序的功能相同(例如使用 ./ftpd start 调用它并使用 ./ftpd stop 关闭该实例)。显然我遇到的问题是我不知
在 dos 中,当我粘贴此命令时它会起作用: "C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" https://google.
在 dos 中,当我粘贴此命令时它会起作用: "C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" https://google.
我希望能够从 cmd 在我的 Windows 10 计算机上调用 python3。 我已重新安装 Python3.7 以确保选择“添加到路径”选项,但仍无法调用 python3 并使 CMD 启动 P
我是一名优秀的程序员,十分优秀!