作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
上下文:我有一个DataFrame
有 2 列:单词和向量。其中“向量”的列类型为VectorUDT
.
示例:
word | vector
assert | [435,323,324,212...]
我想要得到这个:
word | v1 | v2 | v3 | v4 | v5 | v6 ......
assert | 435 | 5435| 698| 356|....
问题:
如何使用 PySpark 将包含向量的列拆分为每个维度的几列?
提前致谢
最佳答案
Spark >= 3.0.0
从 Spark 3.0.0 开始,无需使用 UDF 即可完成此操作。
from pyspark.ml.functions import vector_to_array
(df
.withColumn("xs", vector_to_array("vector")))
.select(["word"] + [col("xs")[i] for i in range(3)]))
## +-------+-----+-----+-----+
## | word|xs[0]|xs[1]|xs[2]|
## +-------+-----+-----+-----+
## | assert| 1.0| 2.0| 3.0|
## |require| 0.0| 2.0| 0.0|
## +-------+-----+-----+-----+
Spark <3.0.0
一种可能的方法是与 RDD 相互转换:
from pyspark.ml.linalg import Vectors
df = sc.parallelize([
("assert", Vectors.dense([1, 2, 3])),
("require", Vectors.sparse(3, {1: 2}))
]).toDF(["word", "vector"])
def extract(row):
return (row.word, ) + tuple(row.vector.toArray().tolist())
df.rdd.map(extract).toDF(["word"]) # Vector values will be named _2, _3, ...
## +-------+---+---+---+
## | word| _2| _3| _4|
## +-------+---+---+---+
## | assert|1.0|2.0|3.0|
## |require|0.0|2.0|0.0|
## +-------+---+---+---+
另一种解决方案是创建 UDF:
from pyspark.sql.functions import udf, col
from pyspark.sql.types import ArrayType, DoubleType
def to_array(col):
def to_array_(v):
return v.toArray().tolist()
# Important: asNondeterministic requires Spark 2.3 or later
# It can be safely removed i.e.
# return udf(to_array_, ArrayType(DoubleType()))(col)
# but at the cost of decreased performance
return udf(to_array_, ArrayType(DoubleType())).asNondeterministic()(col)
(df
.withColumn("xs", to_array(col("vector")))
.select(["word"] + [col("xs")[i] for i in range(3)]))
## +-------+-----+-----+-----+
## | word|xs[0]|xs[1]|xs[2]|
## +-------+-----+-----+-----+
## | assert| 1.0| 2.0| 3.0|
## |require| 0.0| 2.0| 0.0|
## +-------+-----+-----+-----+
对于 Scala 等效项,请参阅 Spark Scala: How to convert Dataframe[vector] to DataFrame[f1:Double, ..., fn: Double)] .
关于python - 如何将 Vector 拆分为列 - 使用 PySpark,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48408089/
我是一名优秀的程序员,十分优秀!