gpt4 book ai didi

r - data.table 相当于 dplyr::filter_at

转载 作者:行者123 更新时间:2023-12-02 04:54:26 24 4
gpt4 key购买 nike

考虑数据:

library(data.table)
library(magrittr)

vec1 <- c("Iron", "Copper")

vec2 <- c("Defective", "Passed", "Error")

set.seed(123)
a1 <- sample(x = vec1, size = 20, replace = T)
b1 <- sample(x = vec2, size = 20, replace = T)

set.seed(1234)
a2 <- sample(x = vec1, size = 20, replace = T)
b2 <- sample(x = vec2, size = 20, replace = T)

DT <- data.table(
c(1:20), a1, b1, a2, b2
) %>% .[order(V1)]

names(DT) <- c("id", "prod_name_1", "test_1", "prod_name_2", "test_2")

我需要过滤 test_1test_2 值为“通过” 的行。因此,如果这些列都没有指定的值,则删除该行。通过dplyr,我们可以使用filter_at()动词:

> # dplyr solution...
>
> cols <- grep(x = names(DT), pattern = "test", value = T, ignore.case = T)
>
>
> DT %>%
+ dplyr::filter_at(.vars = grep(x = names(DT), pattern = "test", value = T, ignore.case = T),
+ dplyr::any_vars(. == "Passed")) -> DT.2
>
> DT.2
id prod_name_1 test_1 prod_name_2 test_2
1 3 Iron Passed Copper Defective
2 5 Copper Passed Copper Defective
3 7 Copper Passed Iron Passed
4 8 Copper Passed Iron Error
5 11 Copper Error Copper Passed
6 14 Copper Error Copper Passed
7 16 Copper Passed Copper Error

酷。在 data.table 中是否有类似的方法来执行此操作?

这是我得到的最接近的:

> lapply(seq_along(cols), function(x){
+
+ setkeyv(DT, cols[[x]])
+
+ DT["Passed"]
+
+ }) %>%
+ do.call(rbind,.) %>%
+ unique -> DT.3
>
> DT.3
id prod_name_1 test_1 prod_name_2 test_2
1: 3 Iron Passed Copper Defective
2: 5 Copper Passed Copper Defective
3: 8 Copper Passed Iron Error
4: 16 Copper Passed Copper Error
5: 7 Copper Passed Iron Passed
6: 11 Copper Error Copper Passed
7: 14 Copper Error Copper Passed
>
> identical(data.table(DT.2)[order(id)], DT.3[order(id)])
[1] TRUE

你们有更优雅的解决方案吗?最好是包含在诸如 dplyr::filter_at() 之类的动词中的内容。

最佳答案

我们可以在.SDcols中指定'cols',循环遍历Data.table的子集(.SD)来比较该值是否“通过”,使用 | 将其减少为单个向量,并对行进行子集化

res2 <- DT[DT[,  Reduce(`|`, lapply(.SD, `==`, "Passed")), .SDcols = cols]]

与OP帖子中的dplyr输出进行比较

identical(as.data.table(res1), res2)
#[1] TRUE

关于r - data.table 相当于 dplyr::filter_at,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48668509/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com