gpt4 book ai didi

java - 没有 MathLab 的 Java 中的 Gabor 图像处理

转载 作者:行者123 更新时间:2023-12-02 04:43:25 25 4
gpt4 key购买 nike

我正在寻找有关将 2D Gabor Wavelets 公式应用于 Java 图像的帮助。这是我正在使用的公式。 Gabor Formula

我需要我的输出看起来像 this我已经读取了图像,并且它当前存储在二维数组中。我的代码如下:`public void RunGabor() throws IOException

{
double[][]pixels=getImage();
int H= pixels.length;
int W =pixels[0].length;

size=H*W;
gaussian=size/2;
System.out.println(gaussian);
GaborGrid = new int[H][W];
GaborNorm = new int[H][W];


double X=0,Y=0, gx=-gaussian,gy=-gaussian, count=0, total=0;
int ax=0, dy=0;
for(int x=0; x<pixels.length; x++)
{
for(int k=0;k< pixels[0].length; k++)
{
X=gx*Math.cos(theta)+gy*Math.sin(theta);
Y=-gx*Math.sin(theta)+gy*Math.cos(theta);

pixels[dy][ax]=((Math.exp(-(Math.pow(X, 2)+(Math.pow(Y, 2)*
Math.pow(upsi,2)))/(2*Math.pow(sigma, 2))))*
(Math.cos((kappa*X+varphi))));
System.out.println("Pixels" +pixels[dy][ax]);
total+=pixels[dy][ax];
count++;
System.out.println("Count" +count);
gx+=1;
ax++;

}

System.out.println("second loop");
ax=0;
dy++;
gy+=1;
gx=-gaussian;
}
mean=total/count;
System.out.println("Mean" +mean);
NormaliseImage(pixels);

}`

从那里它调用一个方法 normaliseImage

public void NormaliseImage(double[][] pixels)
{
double minII = pixels[0][0];
double maxII = pixels[0][0];
for(int y=0; y<pixels.length; y++){
for(int x= 0; x<pixels[0].length; x++){
if(pixels[y][x] <= minII){
minII =pixels[y][x];
}
if(pixels[y][x]>= maxII){
maxII=pixels[y][x];
}

}

我创建的图片类是这样的

  public CreateImage(int[][] data, String IMGname)
{
name = IMGname;
width = data[0].length;
height = data.length;
System.out.println("NEW IMAGE 1");
pixels = new int[height*width];
int count=0;
for(int i=0; i<data.length; i++)
{
for(int j=0; j<data[0].length; j++)
{
pixels[count] = (int)Math.abs(data[i][j]);
pixels[count] = convert2pixel(pixels[count]);
count++;
}
}
Create(width, height, pixels, name);
}
public int convert2pixel(int pixel)
{
return ((0xff<<24)|(pixel<<16)|(pixel<<8)|pixel);
}
public int convert2grey(double pixel)
{
int red=((int)pixel>>16) & 0xff;
int green = ((int)pixel>>8) & 0xff;
int blue = (int)pixel & 0xff;
return (int)(0.3*red+0.6*green+0.1*blue);
}
public void Create(int Width, int Height, int pixels[], String n)//throws Exception
{
//System.out.println("Inside Create Image");
MemoryImageSource MemImg = new MemoryImageSource(Width,Height,pixels,0,Width);
Image img2= Toolkit.getDefaultToolkit().createImage(MemImg);

BufferedImage bfi = new BufferedImage(Height,Width, BufferedImage.TYPE_INT_BGR);
Graphics2D g2D = bfi.createGraphics();

g2D.drawImage(img2, 0, 0, Width, Height, null);
try
{
ImageIO.write(bfi, "png", new File(n+".png"));
}
catch(Exception e){}
}

我的输出只是一个灰色屏幕,我们将不胜感激。

更新:Gabor 驱动类 `

public class Gabor_Driver{




public static void main(String[]args)throws IOException
{


double lamda=75;
double theta=45;
double varphi=90;
double upsi=10;
double bandW=10;
//int size=500;
Gabor gabor = new Gabor(lamda, theta, varphi, upsi, bandW );
}
}

`加博类:

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.text.DecimalFormat;

import javax.imageio.ImageIO;
import javax.swing.JFileChooser;
import javax.swing.JOptionPane;



public class Gabor
{
CreateImage ci;
private double lamda=0;
private double theta=0;
private double varphi=0;
private double upsi=0;
private double bandW=0;
private double B=0;
private double sigma=0;
private double kappa=0;
private int[][] GaborGrid;
private int[][] GaborNorm;

int size=0;
double toRadians=180/Math.PI, min=500, max=-500, mean=0;;
int gaussian=0;
double rotation;
double GLFmean=0;
//Standard Gabor no quantization
public Gabor(double l, double t, double v, double u, double b) throws IOException
{

lamda=l;
theta=t/toRadians;
varphi=v/toRadians;
upsi=u;
bandW=b;
kappa=(2*Math.PI)/lamda;
Calculate_Sigma();

RunGabor();

}
public void RunGabor() throws IOException

{
double[][]pixels=getImage();
int H= pixels.length;
int W =pixels[0].length;

size=H*W;
gaussian=size/2;
System.out.println(gaussian);
GaborGrid = new int[H][W];
GaborNorm = new int[H][W];


double X=0,Y=0, gx=-gaussian,gy=-gaussian, count=0, total=0;
int ax=0, dy=0;
for(int x=0; x<pixels.length; x++)
{
for(int k=0;k< pixels[0].length; k++)
{
X=gx*Math.cos(theta)+gy*Math.sin(theta);
Y=-gx*Math.sin(theta)+gy*Math.cos(theta);

pixels[dy][ax]=((Math.exp(-(Math.pow(X, 2)+(Math.pow(Y, 2)*
Math.pow(upsi,2)))/(2*Math.pow(sigma, 2))))*
(Math.cos((kappa*X+varphi))));
System.out.println("Pixels" +pixels[dy][ax]);
total+=pixels[dy][ax];
count++;
System.out.println("Count" +count);
gx+=1;
ax++;

}
System.out.println("second loop");
ax=0;
dy++;
gy+=1;
gx=-gaussian;
}
mean=total/count;
System.out.println("Mean" +mean);
NormaliseImage(pixels);

}

public double[][] getImage() throws IOException{
int[][]pixels =null;
double[][] doubles = null;
JFileChooser fc = new JFileChooser();
int returnValue = fc.showOpenDialog(null);
if (returnValue == JFileChooser.APPROVE_OPTION) {
File selectedFile = fc.getSelectedFile();





BufferedImage image = ImageIO.read(selectedFile);


System.out.println(selectedFile.getName());
int W =image.getWidth();
int H= image.getHeight();
int width = image.getWidth();
int height = image.getHeight();
pixels = new int[height][width];
for (int row = 0; row < height; row++) {
image.getRGB(0, row, width, 1, pixels[row], 0, width);
}


doubles = new double[pixels.length][pixels[0].length];
for(int i=0; i<pixels.length; i++) {
for(int j=0; j<pixels[0].length; j++)
doubles[i][j] = pixels[+i][+j];
}
}



return doubles;


}
public void NormaliseImage(double[][] pixels)
{
double minII = pixels[0][0];
double maxII = pixels[0][0];
for(int y=0; y<pixels.length; y++){
for(int x= 0; x<pixels[0].length; x++){
if(pixels[y][x] <= minII){
minII =pixels[y][x];
}
if(pixels[y][x]>= maxII){
maxII=pixels[y][x];
}

}
}



int count=0;
double total=0;

for(int y=0; y<pixels.length; y++){
for(int x= 0; x<pixels[0].length; x++){
total += pixels[y][x];
count++;
}
}
double average =(double)total/count;

for(int y=0; y<pixels.length; y++){
for(int x= 0; x<pixels[0].length; x++){
double normalise= ((((pixels[y][x]-min))/((max-min)))*255);
if(normalise<=average){
normalise =0;
}
GaborNorm[y][x] = (int) normalise;
}
}


ci = new CreateImage(GaborNorm, "Gabor");
}


private void Calculate_Sigma()
{
B=(1/Math.PI)*(0.588705011)*((Math.pow(2, bandW)+1)/(Math.pow(2, bandW)-1));
sigma=B*lamda;
}

Create image class:

import java.io.*;
import java.awt.*;
import java.awt.image.*;
import javax.imageio.*;

public class CreateImage
{
int[] pixels;
int width=0, height=0;
String name;

public CreateImage(int[][] data, String IMGname)
{
name = IMGname;
width = data[0].length;
height = data.length;
System.out.println("NEW IMAGE 1");
pixels = new int[height*width];
int count=0;
for(int i=0; i<data.length; i++)
{
for(int j=0; j<data[0].length; j++)
{
pixels[count] = (int)Math.abs(data[i][j]);
pixels[count] = convert2pixel(pixels[count]);
count++;
}
}
Create(width, height, pixels, name);
}
public int convert2pixel(int pixel)
{
return ((0xff<<24)|(pixel<<16)|(pixel<<8)|pixel);
}
public int convert2grey(double pixel)
{
int red=((int)pixel>>16) & 0xff;
int green = ((int)pixel>>8) & 0xff;
int blue = (int)pixel & 0xff;
return (int)(0.3*red+0.6*green+0.1*blue);
}
public void Create(int Width, int Height, int pixels[], String n)//throws Exception
{
//System.out.println("Inside Create Image");
MemoryImageSource MemImg = new MemoryImageSource(Width,Height,pixels,0,Width);
Image img2= Toolkit.getDefaultToolkit().createImage(MemImg);

BufferedImage bfi = new BufferedImage(Height,Width, BufferedImage.TYPE_INT_BGR);
Graphics2D g2D = bfi.createGraphics();

g2D.drawImage(img2, 0, 0, Width, Height, null);
try
{
ImageIO.write(bfi, "png", new File(n+".png"));
}
catch(Exception e){}
}

最佳答案

您的计算大部分是正确的。您正在计算 RunGabor 中的函数本身——我认为 gx、gy 应该替换为 x、k。这个

 for(int x=0; x<pixels.length; x++)
{
for(int k=0;k< pixels[0].length; k++)
{
X=gx*Math.cos(theta)+gy*Math.sin(theta);
Y=-gx*Math.sin(theta)+gy*Math.cos(theta);

pixels[dy][ax]=((Math.exp(-(Math.pow(X, 2)+(Math.pow(Y, 2)*
Math.pow(upsi,2)))/(2*Math.pow(sigma, 2))))*
(Math.cos((kappa*X+varphi))));

应替换为

 public Kernel getKernel() {
double sigma = calculateSigma(waveLength, bandwidth);
float[] data = new float[width*height];
for(int k = 0, x = -width/2; x <= width/2; x++) {
for(int y = -height/2; y <= height/2; y++) {
for(double orientation : orientations) {
double x1 = x*Math.cos(orientation) + y*Math.sin(orientation);
double y1 = -x*Math.sin(orientation) + y*Math.cos(orientation);
data[k] += (float)(gaborFunction(x1, y1, sigma, aspectRatio, waveLength, phaseOffset));
}
k++;
}
}

但是您必须将该函数应用于您正在读取的像素,即图像。如果你看看这个其他实现 https://github.com/clumsy/gabor-filter/blob/master/src/main/java/GaborFilter.java

你会发现很多相似之处。看看您是否可以修复它。

至少作为第一步,您应该尝试打印 3x3 或 5x5 的 gabor 函数的值。如果它们看起来合理,您可以继续将其应用于图像。

关于java - 没有 MathLab 的 Java 中的 Gabor 图像处理,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35374356/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com