- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
Apache Mahout 是否提供了一种执行 n 重交叉验证的方法,而不是随机 hold-out 测试?如果没有,您建议使用什么其他 Java 框架(提供可用的代码示例/良好的文档,并且如果可能的话您个人使用过)?
我当前的代码(使用随机保留):
RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
double result = evaluator.evaluate(builder, null, model, 0.9, 1.0);
System.out.println("Evaluation : " + result);
最佳答案
这是一个自定义实现,我从 Mahout 扩展了 AbstractDifferenceRecommenderEvaluator
。我只是复制并粘贴代码。请检查是否满足您的需求。我想我在类里面的评论已经足够多了。
public abstract class AbstractKFoldRecommenderEvaluator extends AbstractDifferenceRecommenderEvaluator {
private final Random random;
public double noEstimateCounterAverage = 0.0;
public double totalEstimateCount = 0.0;
public double totalEstimateCountAverage = 0.0;
private static final Logger log = LoggerFactory
.getLogger(AbstractKFoldRecommenderEvaluator.class);
public AbstractKFoldRecommenderEvaluator() {
super();
random = RandomUtils.getRandom();
}
public double getNoEstimateCounterAverage(){
return noEstimateCounterAverage;
}
public double getTotalEstimateCount(){
return totalEstimateCount;
}
public double getTotalEstimateCountAverage(){
return totalEstimateCountAverage;
}
/**
* We use the same evaluate function from the RecommenderEvaluator interface
* the trainingPercentage is used as the number of folds, so it can have
* values bigger than 0 to the number of folds.
*/
@Override
public double evaluate(RecommenderBuilder recommenderBuilder,
DataModelBuilder dataModelBuilder, DataModel dataModel,
double trainingPercentage, double evaluationPercentage)
throws TasteException {
Preconditions.checkNotNull(recommenderBuilder);
Preconditions.checkNotNull(dataModel);
Preconditions.checkArgument(trainingPercentage >= 0.0,
"Invalid trainingPercentage: " + trainingPercentage);
Preconditions.checkArgument(evaluationPercentage >= 0.0
&& evaluationPercentage <= 1.0,
"Invalid evaluationPercentage: " + evaluationPercentage);
log.info("Beginning evaluation using {} of {}", trainingPercentage,
dataModel);
int numUsers = dataModel.getNumUsers();
// Get the number of folds
int noFolds = (int) trainingPercentage;
// Initialize buckets for the number of folds
List<FastByIDMap<PreferenceArray>> folds = new ArrayList<FastByIDMap<PreferenceArray>>();
for (int i = 0; i < noFolds; i++) {
folds.add(new FastByIDMap<PreferenceArray>(
1 + (int) (i / noFolds * numUsers)));
}
// Split the dataModel into K folds per user
LongPrimitiveIterator it = dataModel.getUserIDs();
while (it.hasNext()) {
long userID = it.nextLong();
if (random.nextDouble() < evaluationPercentage) {
splitOneUsersPrefs2(noFolds, folds, userID, dataModel);
}
}
double result = Double.NaN;
List<Double> intermediateResults = new ArrayList<>();
List<Integer> unableToRecoomend = new ArrayList<>();
List<Integer> averageEstimateCounterIntermediate = new ArrayList<>();
noEstimateCounterAverage = 0.0;
totalEstimateCount = 0.0;
totalEstimateCountAverage = 0.0;
int totalEstimateCounter = 0;
// Rotate the folds. Each time only one is used for testing and the rest
// k-1 folds are used for training
for (int k = 0; k < noFolds; k++) {
FastByIDMap<PreferenceArray> trainingPrefs = new FastByIDMap<PreferenceArray>(
1 + (int) (evaluationPercentage * numUsers));
FastByIDMap<PreferenceArray> testPrefs = new FastByIDMap<PreferenceArray>(
1 + (int) (evaluationPercentage * numUsers));
for (int i = 0; i < folds.size(); i++) {
// The testing fold
testPrefs = folds.get(k);
// Build the training set from the remaining folds
if (i != k) {
for (Map.Entry<Long, PreferenceArray> entry : folds.get(i)
.entrySet()) {
if (!trainingPrefs.containsKey(entry.getKey())) {
trainingPrefs.put(entry.getKey(), entry.getValue());
} else {
List<Preference> userPreferences = new ArrayList<Preference>();
PreferenceArray existingPrefs = trainingPrefs
.get(entry.getKey());
for (int j = 0; j < existingPrefs.length(); j++) {
userPreferences.add(existingPrefs.get(j));
}
PreferenceArray newPrefs = entry.getValue();
for (int j = 0; j < newPrefs.length(); j++) {
userPreferences.add(newPrefs.get(j));
}
trainingPrefs.remove(entry.getKey());
trainingPrefs.put(entry.getKey(),
new GenericUserPreferenceArray(
userPreferences));
}
}
}
}
DataModel trainingModel = dataModelBuilder == null ? new GenericDataModel(
trainingPrefs) : dataModelBuilder
.buildDataModel(trainingPrefs);
Recommender recommender = recommenderBuilder
.buildRecommender(trainingModel);
Double[] retVal = getEvaluation(testPrefs, recommender);
double intermediate = retVal[0];
int noEstimateCounter = ((Double)retVal[1]).intValue();
totalEstimateCounter += ((Double)retVal[2]).intValue();
averageEstimateCounterIntermediate.add(((Double)retVal[2]).intValue());
log.info("Evaluation result from fold {} : {}", k, intermediate);
log.info("Average Unable to recommend for fold {} in: {} cases out of {}", k, noEstimateCounter, ((Double)retVal[2]).intValue());
intermediateResults.add(intermediate);
unableToRecoomend.add(noEstimateCounter);
}
double sum = 0;
double noEstimateSum = 0;
double totalEstimateSum = 0;
// Sum the results in each fold
for (int i = 0; i < intermediateResults.size(); i++) {
if (!Double.isNaN(intermediateResults.get(i))) {
sum += intermediateResults.get(i);
noEstimateSum+=unableToRecoomend.get(i);
totalEstimateSum+=averageEstimateCounterIntermediate.get(i);
}
}
if (sum > 0) {
// Get an average for the folds
result = sum / intermediateResults.size();
}
double noEstimateCount = 0;
if(noEstimateSum>0){
noEstimateCount = noEstimateSum / unableToRecoomend.size();
}
double avgEstimateCount = 0;
if(totalEstimateSum>0){
avgEstimateCount = totalEstimateSum / averageEstimateCounterIntermediate.size();
}
log.info("Average Evaluation result: {} ", result);
log.info("Average Unable to recommend in: {} cases out of avg. {} cases or total {} ", noEstimateCount, avgEstimateCount, totalEstimateCounter);
noEstimateCounterAverage = noEstimateCount;
totalEstimateCount = totalEstimateCounter;
totalEstimateCountAverage = avgEstimateCount;
return result;
}
/**
* Split the preference values for one user into K folds, randomly
* Generate random number until is not the same as the previously generated on
* in order to make sure that at least two buckets are populated.
*
* @param k
* @param folds
* @param userID
* @param dataModel
* @throws TasteException
*/
private void splitOneUsersPrefs(int k,
List<FastByIDMap<PreferenceArray>> folds, long userID,
DataModel dataModel) throws TasteException {
List<List<Preference>> oneUserPrefs = Lists
.newArrayListWithCapacity(k + 1);
for (int i = 0; i < k; i++) {
oneUserPrefs.add(null);
}
PreferenceArray prefs = dataModel.getPreferencesFromUser(userID);
int size = prefs.length();
int previousBucket = -1;
Double rand = -2.0;
for (int i = 0; i < size; i++) {
Preference newPref = new GenericPreference(userID,
prefs.getItemID(i), prefs.getValue(i));
do {
rand = random.nextDouble() * k * 10;
rand = (double) Math.floor(rand / 10);
// System.out.println("inside Rand "+rand);
} while (rand.intValue() == previousBucket);
// System.out.println("outside rand "+rand);
if (oneUserPrefs.get(rand.intValue()) == null) {
oneUserPrefs.set(rand.intValue(), new ArrayList<Preference>());
}
oneUserPrefs.get(rand.intValue()).add(newPref);
previousBucket = rand.intValue();
}
for (int i = 0; i < k; i++) {
if (oneUserPrefs.get(i) != null) {
folds.get(i).put(userID,
new GenericUserPreferenceArray(oneUserPrefs.get(i)));
}
}
}
/**
* Split the preference values for one user into K folds, by shuffling.
* First Shuffle the Preference array for the user. Then distribute the item-preference pairs
* starting from the first buckets to the k-th bucket, and then start from the beggining.
*
* @param k
* @param folds
* @param userID
* @param dataModel
* @throws TasteException
*/
private void splitOneUsersPrefs2(int k, List<FastByIDMap<PreferenceArray>> folds, long userID, DataModel dataModel) throws TasteException {
List<List<Preference>> oneUserPrefs = Lists.newArrayListWithCapacity(k + 1);
for (int i = 0; i < k; i++) {
oneUserPrefs.add(null);
}
PreferenceArray prefs = dataModel.getPreferencesFromUser(userID);
int size = prefs.length();
List<Preference> userPrefs = new ArrayList<>();
Iterator<Preference> it = prefs.iterator();
while (it.hasNext()) {
userPrefs.add(it.next());
}
// Shuffle the items
Collections.shuffle(userPrefs);
int currentBucket = 0;
for (int i = 0; i < size; i++) {
if (currentBucket == k) {
currentBucket = 0;
}
Preference newPref = new GenericPreference(userID, userPrefs.get(i).getItemID(), userPrefs.get(i).getValue());
if (oneUserPrefs.get(currentBucket) == null) {
oneUserPrefs.set(currentBucket, new ArrayList<Preference>());
}
oneUserPrefs.get(currentBucket).add(newPref);
currentBucket++;
}
for (int i = 0; i < k; i++) {
if (oneUserPrefs.get(i) != null) {
folds.get(i).put(userID, new GenericUserPreferenceArray(oneUserPrefs.get(i)));
}
}
}
private Double[] getEvaluation(FastByIDMap<PreferenceArray> testPrefs, Recommender recommender) throws TasteException {
reset();
Collection<Callable<Void>> estimateCallables = Lists.newArrayList();
AtomicInteger noEstimateCounter = new AtomicInteger();
AtomicInteger totalEstimateCounter = new AtomicInteger();
for (Map.Entry<Long, PreferenceArray> entry : testPrefs.entrySet()) {
estimateCallables.add(new PreferenceEstimateCallable(recommender, entry.getKey(), entry.getValue(), noEstimateCounter, totalEstimateCounter));
}
log.info("Beginning evaluation of {} users", estimateCallables.size());
RunningAverageAndStdDev timing = new FullRunningAverageAndStdDev();
execute(estimateCallables, noEstimateCounter, timing);
Double[] retVal = new Double[3];
retVal[0] = computeFinalEvaluation();
retVal[1] = (double) noEstimateCounter.get();
retVal[2] = (double) totalEstimateCounter.get();
//retVal.put(computeFinalEvaluation(), noEstimateCounter.get());
//return computeFinalEvaluation();
return retVal;
}}
这是实际的实现类:
public class RMSRecommenderEvaluatorModified extends AbstractKFoldRecommenderEvaluator {
private RunningAverage average;
@Override
protected void reset() {
average = new FullRunningAverage();
}
@Override
protected void processOneEstimate(float estimatedPreference, Preference realPref) {
double diff = realPref.getValue() - estimatedPreference;
average.addDatum(diff * diff);
}
@Override
protected double computeFinalEvaluation() {
return Math.sqrt(average.getAverage());
}
@Override
public String toString() {
return "RMSRecommenderEvaluator";
}}
关于java - 如何进行n重交叉验证(Mahout)?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30198646/
我正在编写一个具有以下签名的 Java 方法。 void Logger(Method method, Object[] args); 如果一个方法(例如 ABC() )调用此方法 Logger,它应该
我是 Java 新手。 我的问题是我的 Java 程序找不到我试图用作的图像文件一个 JButton。 (目前这段代码什么也没做,因为我只是得到了想要的外观第一的)。这是我的主课 代码: packag
好的,今天我在接受采访,我已经编写 Java 代码多年了。采访中说“Java 垃圾收集是一个棘手的问题,我有几个 friend 一直在努力弄清楚。你在这方面做得怎么样?”。她是想骗我吗?还是我的一生都
我的 friend 给了我一个谜语让我解开。它是这样的: There are 100 people. Each one of them, in his turn, does the following
如果我将使用 Java 5 代码的应用程序编译成字节码,生成的 .class 文件是否能够在 Java 1.4 下运行? 如果后者可以工作并且我正在尝试在我的 Java 1.4 应用程序中使用 Jav
有关于why Java doesn't support unsigned types的问题以及一些关于处理无符号类型的问题。我做了一些搜索,似乎 Scala 也不支持无符号数据类型。限制是Java和S
我只是想知道在一个 java 版本中生成的字节码是否可以在其他 java 版本上运行 最佳答案 通常,字节码无需修改即可在 较新 版本的 Java 上运行。它不会在旧版本上运行,除非您使用特殊参数 (
我有一个关于在命令提示符下执行 java 程序的基本问题。 在某些机器上我们需要指定 -cp 。 (类路径)同时执行java程序 (test为java文件名与.class文件存在于同一目录下) jav
我已经阅读 StackOverflow 有一段时间了,现在我才鼓起勇气提出问题。我今年 20 岁,目前在我的家乡(罗马尼亚克卢日-纳波卡)就读 IT 大学。足以介绍:D。 基本上,我有一家提供簿记应用
我有 public JSONObject parseXML(String xml) { JSONObject jsonObject = XML.toJSONObject(xml); r
我已经在 Java 中实现了带有动态类型的简单解释语言。不幸的是我遇到了以下问题。测试时如下代码: def main() { def ks = Map[[1, 2]].keySet()
一直提示输入 1 到 10 的数字 - 结果应将 st、rd、th 和 nd 添加到数字中。编写一个程序,提示用户输入 1 到 10 之间的任意整数,然后以序数形式显示该整数并附加后缀。 public
我有这个 DownloadFile.java 并按预期下载该文件: import java.io.*; import java.net.URL; public class DownloadFile {
我想在 GUI 上添加延迟。我放置了 2 个 for 循环,然后重新绘制了一个标签,但这 2 个 for 循环一个接一个地执行,并且标签被重新绘制到最后一个。 我能做什么? for(int i=0;
我正在对对象 Student 的列表项进行一些测试,但是我更喜欢在 java 类对象中创建硬编码列表,然后从那里提取数据,而不是连接到数据库并在结果集中选择记录。然而,自从我这样做以来已经很长时间了,
我知道对象创建分为三个部分: 声明 实例化 初始化 classA{} classB extends classA{} classA obj = new classB(1,1); 实例化 它必须使用
我有兴趣使用 GPRS 构建车辆跟踪系统。但是,我有一些问题要问以前做过此操作的人: GPRS 是最好的技术吗?人们意识到任何问题吗? 我计划使用 Java/Java EE - 有更好的技术吗? 如果
我可以通过递归方法反转数组,例如:数组={1,2,3,4,5} 数组结果={5,4,3,2,1}但我的结果是相同的数组,我不知道为什么,请帮助我。 public class Recursion { p
有这样的标准方式吗? 包括 Java源代码-测试代码- Ant 或 Maven联合单元持续集成(可能是巡航控制)ClearCase 版本控制工具部署到应用服务器 最后我希望有一个自动构建和集成环境。
我什至不知道这是否可能,我非常怀疑它是否可能,但如果可以,您能告诉我怎么做吗?我只是想知道如何从打印机打印一些文本。 有什么想法吗? 最佳答案 这里有更简单的事情。 import javax.swin
我是一名优秀的程序员,十分优秀!