gpt4 book ai didi

r - data.table fread 无法为具有 200Gb RAM 的 300Mb 文件分配内存

转载 作者:行者123 更新时间:2023-12-02 04:25:48 24 4
gpt4 key购买 nike

fread 无法读取具有 200Gb 空闲 RAM 的 300Mb .csv 文件,并出现错误

Error: cannot allocate vector of size 5.6 Mb

任务管理器截图:

enter image description here

该文件包含 373522 行和 401 列,其中 1 列(标识符)是字符,400 列是数字。

UPD:这个问题似乎与缺少 RAM 无关,而是与释放的分配机制有关,因为如上所述我有 200Gb 的可用 RAM,并且只想读取 300Mb 带有数字列的 csv 文件

UPD2:添加了 VERBOSE 输出

我如何读取文件:
lang-r
data <- fread(
file = fn,
sep = ",",
stringsAsFactors = FALSE,
data.table = FALSE,
nrows = 1
)

col_classes <- c(
"character",
rep("numeric", ncol(data) - 1)
)

data <- fread(
file = fn,
sep = ",",
na.strings = c("NA", "na", "NULL", "null", ""),
stringsAsFactors = FALSE,
colClasses = col_classes,
showProgress = TRUE,
data.table = FALSE
)


lang-r
> file.size(fn)
[1] 331201365

session 信息:

lang-r
> sessionInfo()
R version 3.5.2 (2018-12-20)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows Server >= 2012 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] stringr_1.3.1 purrr_0.2.5 dplyr_0.7.8 data.table_1.12.0 crayon_1.3.4

loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 assertthat_0.2.0 R6_2.3.0 magrittr_1.5 pillar_1.3.1 stringi_1.2.4
[7] rlang_0.3.1 rstudioapi_0.9.0 bindrcpp_0.2.2 tools_3.5.2 glue_1.3.0 yaml_2.2.0
[13] compiler_3.5.2 pkgconfig_2.0.2 tidyselect_0.2.5 bindr_0.1.1 tibble_2.0.1

请让我知道是否需要释放的 VERBOSE 输出。

lang-r
omp_get_max_threads() = 64
omp_get_thread_limit() = 2147483647
DTthreads = 0
RestoreAfterFork = true
Input contains no \n. Taking this to be a filename to open
[01] Check arguments
Using 64 threads (omp_get_max_threads()=64, nth=64)
NAstrings = [<<NA>>, <<na>>, <<NULL>>, <<null>>, <<>>]
None of the NAstrings look like numbers.
show progress = 1
0/1 column will be read as integer
[02] Opening the file
Opening file I:/secret_file_name.csv
File opened, size = 315.9MB (331201365 bytes).
Memory mapped ok
[03] Detect and skip BOM
[04] Arrange mmap to be \0 terminated
\n has been found in the input and different lines can end with different line endings (e.g. mixed \n and \r\n in one file). This is common and ideal.
[05] Skipping initial rows if needed
Positioned on line 1 starting: <<id,column_1>>
[06] Detect separator, quoting rule, and ncolumns
Using supplied sep ','
sep=',' with 100 lines of 301 fields using quote rule 0
Detected 301 columns on line 1. This line is either column names or first data row. Line starts as: <<id,column_1>>
Quote rule picked = 0
fill=false and the most number of columns found is 301
[07] Detect column types, good nrow estimate and whether first row is column names
Number of sampling jump points = 100 because (331201363 bytes from row 1 to eof) / (2 * 163458 jump0size) == 1013
Type codes (jump 000) : A7777777777777777777777557777777557777775577777777755777777755777555777555777777...7777777777 Quote rule 0
Type codes (jump 002) : A7777777777777777777777557777777557777775577777777755777777755777777777557777777...7777777777 Quote rule 0
Type codes (jump 020) : A7777777777777777777777557777777557777775577777777755777777755777777777557777777...7777777777 Quote rule 0
Type codes (jump 027) : A7777777777777777777777777777777557777775577777777755777777777777777777557777777...7777777777 Quote rule 0
Type codes (jump 058) : A7777777777777777777777777777777777777777777777777777777777777777777777557777777...7777777777 Quote rule 0
Type codes (jump 100) : A7777777777777777777777777777777777777777777777777777777777777777777777557777777...7777777777 Quote rule 0
'header' determined to be true due to column 2 containing a string on row 1 and a lower type (float64) in the rest of the 10059 sample rows
=====
Sampled 10059 rows (handled \n inside quoted fields) at 101 jump points
Bytes from first data row on line 2 to the end of last row: 331159811
Line length: mean=903.71 sd=756.62 min=326 max=4068
Estimated number of rows: 331159811 / 903.71 = 366444
Initial alloc = 732888 rows (366444 + 100%) using bytes/max(mean-2*sd,min) clamped between [1.1*estn, 2.0*estn]
=====
[08] Assign column names
[09] Apply user overrides on column types
After 6 type and 0 drop user overrides : A7777777777777777777777777777777777777777777777777777777777777777777777777777777...7777777777
[10] Allocate memory for the datatable
Allocating 301 column slots (301 - 0 dropped) with 732888 rows
Error: cannot allocate vector of size 5.6 Mb

最佳答案

R 处理您在 RAM 上的数据。所以你的全局环境的大小最多可以是分配给 R 的 RAM 的大小。

这里有一些技巧。

1 - 使用 gc() 强制垃圾收集

2 - 删除不必要的数据

3 - 使用较小的数据类型,如整数而不是数字

看看我之前的回答 here .

关于r - data.table fread 无法为具有 200Gb RAM 的 300Mb 文件分配内存,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54528429/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com