- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试用我拥有的一些数据绘制洪水频率图表。这是我正在使用的数据类型:
#Set up maximum flow data
flow=sample(seq(10,1000,20),100,replace=TRUE)
flow=as.data.frame(flow[order(flow, decreasing=TRUE)])
names(flow)="max"
#rank flows from largest to smallest
flow$"rank"=seq(1,nrow(flow),1)
#Calculate the return interval in years
flow$"RI"=(nrow(flow)+1)/flow$"rank"
plot(flow$"max"~flow$"RI",type='p',log='xy', xlab='Return Interval', ylab='Max flow')
现在我们有了每年记录的最大流量和复发间隔的估计。现在我想做的是找到最适合的对数线。我一直在尝试使用 nls 函数,但不断出现此错误。
Error in parse(text = x) : <text>:2:0: unexpected end of input
1: ~
^
以下是我使用 nls 函数执行的操作的示例:
logMod = nls((flow$"max"~(a*log10(flow$"RI")+b)),start = list(a = 0, b = 0))
有人可以帮助我并让我知道我在哪里误入歧途吗?
最佳答案
在 nls 公式中指定 data.frame 中的数据时,不应使用 $
。您应该使用 data=
参数来指定使用哪个 data.frame 来查找变量值。因此你应该将你的调用更改为
logMod = nls( max ~ (a*log10(RI)+b), data=flow,
start = list(a = 0, b = 0))
问题似乎是由于使用 a$"b"
而不是更常见的 a$b
造成的。 nls()
使用 all.vars()
提取变量名称。并观察
all.vars(flow$"max" ~ (a * log10(flow$"RI") + b))
# [1] "flow" "a" "b"
all.vars(flow$max ~ (a * log10(flow$RI) + b))
# [1] "flow" "max" "a" "RI" "b"
这是因为当您使用引号时,您不再将列指定为符号/名称以供 all.vars()
查找,而是将它们作为字符值传递,这些字符值是没有提取。因此,在这种情况下 a$b
与 a$"b"
此外,正如 @Gregor 指出的那样,如果您只是对其中一个预测变量进行对数变换,那么这基本上仍然是一个线性模型。你可以做
lm( max ~ log10(RI), data=flow)
关于r - 创建拟合对数模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29568831/
gnuplot 中拟合函数的正确方法是什么 f(x)有下一个表格吗? f(x) = A*exp(x - B*f(x)) 我尝试使用以下方法将其拟合为任何其他函数: fit f(x) "data.txt
(1)首先要建立数据集 ? 1
测量显示一个信号,其形式类似于具有偏移量和因子的平方根函数。如何找到系数并在一个图中绘制原始数据和拟合曲线? require(ggplot2) require(nlmrt) # may be thi
我想将以下函数拟合到我的数据中: f(x) = Offset+Amplitudesin(FrequencyT+Phase), 或根据 Wikipedia : f(x) = C+alphasin(ome
我正在尝试使用与此工具相同的方法在 C# 中拟合 Akima 样条曲线:https://www.mycurvefit.com/share/4ab90a5f-af5e-435e-9ce4-652c95c
问题:开放层适合 map ,只有在添加特征之后(视觉),我该如何避免这种情况? 我在做这个 第 1 步 - 创建特征 var feature = new ol.Feature({...}); 第 2
我有一个数据变量,其中包含以下内容: [Object { score="2.8", word="Blue"}, Object { score="2.8", word="Red"}, Objec
我正在尝试用中等大小的 numpy float 组来填充森林 In [3]: data.shape Out[3]: (401125, 5) [...] forest = forest.fit(data
我想用洛伦兹函数拟合一些数据,但我发现当我使用不同数量级的参数时拟合会出现问题。 这是我的洛伦兹函数: function [ value ] = lorentz( x,x0,gamma,amp )
我有一些数据,我希望对其进行建模,以便能够在与数据相同的范围内获得相对准确的值。 为此,我使用 polyfit 来拟合 6 阶多项式,由于我的 x 轴值,它建议我将其居中并缩放以获得更准确的拟合。 但
我一直在寻找一种方法来使数据符合 beta 二项分布并估计 alpha 和 beta,类似于 VGAM 库中的 vglm 包的方式。我一直无法找到如何在 python 中执行此操作。有一个 scipy
我将 scipy.optimize.minimize ( https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html ) 函数与
在过去的几天里,我一直在尝试使用 python 绘制圆形数据,方法是构建一个范围从 0 到 2pi 的圆形直方图并拟合 Von Mises 分布。我真正想要实现的是: 具有拟合 Von-Mises 分
我有一个简单的循环,它在每次迭代中都会创建一个 LSTM(具有相同的参数)并将其拟合到相同的数据。问题是迭代过程中需要越来越多的时间。 batch_size = 10 optimizer = opti
我有一个 Python 系列,我想为其直方图拟合密度。问题:是否有一种巧妙的方法可以使用 np.histogram() 中的值来实现此结果? (请参阅下面的更新) 我目前的问题是,我执行的 kde 拟
我有一个简单的 keras 模型(正常套索线性模型),其中输入被移动到单个“神经元”Dense(1, kernel_regularizer=l1(fdr))(input_layer) 但是权重从这个模
我正在尝试解决 Boston Dataset 上的回归问题在random forest regressor的帮助下.我用的是GridSearchCV用于选择最佳超参数。 问题一 我是否应该将 Grid
使用以下函数,可以在输入点 P 上拟合三次样条: def plotCurve(P): pts = np.vstack([P, P[0]]) x, y = pts.T i = np.aran
我有 python 代码可以生成数字 x、y 和 z 的三元组列表。我想使用 scipy curve_fit 来拟合 z= f(x,y)。这是一些无效的代码 A = [(19,20,24), (10,
我正在尝试从 this answer 中复制代码,但是我在这样做时遇到了问题。我正在使用包 VGAM 中的gumbel 发行版和 fitdistrplus . 做的时候出现问题: fit = fi
我是一名优秀的程序员,十分优秀!