- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试将这些数字转换为二进制科学记数法,但我无法弄清楚这个过程。有人可以请一下解决这个问题的过程吗?
For IEEE 754 single precision floating point, what is the number, as written in binary scientific notation, whose hexadecimal representation is the following?
0061 0000
我可以将其从十六进制转换为无符号二进制:
0000 0000 0110 0001 0000 0000 0000 0000
但我不知道如何使用二进制科学记数法正确表示这一点。提前致谢!
最佳答案
binary32分为 3 个部分:符号、指数(有偏差)和有效数(或分数)。
0000 0000 0110 0001 0000 0000 0000 0000
|| || |
|| |\-- significand -----------/
| \ expo /
\ sign
所以在这种情况下,
sign (negative) = 0, so number is positive
exponent (biased) = 0000 0000
significand = .1100001 0000 0000 0000 0000
如果指数(2 的幂)处于最大值(1111 1111),则表明该数字是特殊的:无穷大或非数字。
如果指数为 0,则偏差为 -126,否则偏差为 -127,并且应将隐含的 1
添加到分数中。
sign = 0 (positive) or +1
exponent = 0 - 126
significand = 0.1100001 = (binary) 1100001/10000000 = 97/128
+1 * pow(2, -126) * 97/128 = 8.9080431273251475213255815711373...e-39
注释:
提供在线转换器。 example
Endian:解释字节的顺序可以变化。 0061 0000
可以是 00 00 61 00
。在此示例中做出了假设。
关于binary - 将十六进制转换为 IEEE-754 单精度浮点二进制科学计数法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35242605/
除非 IEEE 754 是 NaN、+-0.0 或 +-Infinity,否则自除是否保证结果正好是 1.0? 同样,减去本身是否保证总是导致 +-0.0? 最佳答案 IEEE 754-2008 4.
我已经阅读了一些文本和线程,展示了如何从十进制转换为 IEEE 754,但我仍然对如何在不扩展小数(以科学计数法表示)的情况下转换数字感到困惑 我特别使用的数字是9.07 * 10^23,但任何数字都
为什么 float 中的指数要置换 127? 那么,真正的问题是:与 2 的补码相比,这种表示法有什么优势? 最佳答案 由于存储的指数是无符号的,因此可以使用整数指令来比较浮点值。为了比较(不是补码)
我一直在使用 Mendeley 的 Microsoft Word 插件轻松引用我的 Mendeley 桌面图书馆中的论文。 但是,我注意到 IEEE 格式的引用书目/引文在引用 session 记录和
我花了一周的时间研究这个主题,发现没有语言能够正确满足 IEEE 754 规范。 甚至 GCC 也不尊重相关的 C99 部分(它忽略了 FENV_ACCESS 编译指示,并且我被告知我的工作示例纯粹是
有很多 IEEE 标准。几乎所有语言都保证实现 IEEE 754 二进制 float 。 最佳答案 我认为这只是流水号,就像 IRC 有 RFC1459 关于ieee-754 - IEEE 754 f
我们在类里面有一个作业,要使用 c 从十进制转换为单精度,但我完全迷失了。 这是作业: The last part of this lab involves coding a short c algo
我使用的是在 SoftFloat 库中实现的半 float (阅读:100% IEEE 754 兼容),为了完整起见,我希望为我的代码提供与 float.h> 用于 float、double 和 lo
我很难理解IEEE 754舍入约定: 四舍五入为正无穷大 四舍五入为负无穷大 无偏到最接近的偶数 如果我在二进制点的右边有一个由9位组成的二进制数,并且我需要使用最右边的3位来确定舍入该怎么办? 这是
关闭。这个问题需要更多focused .它目前不接受答案。 想改善这个问题吗?更新问题,使其仅关注一个问题 editing this post . 4年前关闭。 Improve this questi
我创建了以下程序来查找 float 的位模式。但我的计算结果有所不同: #include int main(void){ float f = 1.234; char *ch;
我在 18 位软核处理器目标上有一个 gcc 交叉编译器定义了以下数据类型:18 位整数、36 位长整型和 36 位 float (单精度)。现在我的重点是浮点运算。由于宽度是非标准(36位),我有以
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 8 年前。 Improve th
Analog Devices 的 BFF-533 处理器不提供原生浮点支持,但提供浮点仿真。 使用 IDE VisualDSP++,用户可以在高性能浮点和严格的 IEEE 合规性之间进行选择。 据我了
我在没有浮点单元的处理器上工作,所以我必须为用户界面使用固定或自定义浮点类型。 对于这三种类型,say a multiply 的性能如何: IEEE float (32) 具有 16 位有符号值和有符
我对浮点数的工作原理有很好的理解,但我想知 Prop 体的指数和尾数大小是如何决定的。它们在某些方面是最优的吗?如何测量浮点表示的最优性(我假设有几种方法)?我想这些问题在官方标准中得到了解决,但我无
任何人都建议使用良好的压缩算法,该算法可与 double 浮点值一起很好地工作?我们发现,对于浮点值的二进制表示,使用常见的压缩程序(例如Zip,RAR,7-Zip等)会导致非常差的压缩率。 我们需要
我正在尝试将 0.0000211 转换为二进制。目前我的理解是这样的: E = -偏差 + 1。偏差 = 15,E = -14 符号位和指数 = 0。 所以我有: 0 00000 ?????????
我试图找出 ieee 754 中存在多少个不同的整数。我得到的数字是 1778384895,但我找不到任何资源来检查自己。预先非常感谢。 最佳答案 我将假设单精度 float 。 我们得到了零,虽然可
在运行 32 位 GCC 7.3.0 的特定在线判断中,这个: #include volatile float three = 3.0f, seven = 7.0f; int main() {
我是一名优秀的程序员,十分优秀!