gpt4 book ai didi

r - Julia pmap 性能

转载 作者:行者123 更新时间:2023-12-02 04:04:06 25 4
gpt4 key购买 nike

我正在尝试将一些 R 代码移植到 Julia;基本上我在 Julia 中重写了以下 R 代码:

library(parallel)

eps_1<-rnorm(1000000)
eps_2<-rnorm(1000000)

large_matrix<-ifelse(cbind(eps_1,eps_2)>0,1,0)
matrix_to_compare = expand.grid(c(0,1),c(0,1))
indices<-seq(1,1000000,4)
large_matrix<-lapply(indices,function(i)(large_matrix[i:(i+3),]))

function_compare<-function(x){
which((rowSums(x==matrix_to_compare)==2) %in% TRUE)
}

> system.time(lapply(large_matrix,function_compare))
user system elapsed
38.812 0.024 38.828
> system.time(mclapply(large_matrix,function_compare,mc.cores=11))
user system elapsed
63.128 1.648 6.108

正如人们所注意到的,当从 1 个核心升级到 11 个核心时,我得到了显着的加速。现在我尝试在 Julia 中做同样的事情:

#Define cluster:

addprocs(11);

using Distributions;
@everywhere using Iterators;
d = Normal();

eps_1 = rand(d,1000000);
eps_2 = rand(d,1000000);


#Create a large matrix:
large_matrix = hcat(eps_1,eps_2).>=0;
indices = collect(1:4:1000000)

#Split large matrix:
large_matrix = [large_matrix[i:(i+3),:] for i in indices];

#Define the function to apply:
@everywhere function function_split(x)
matrix_to_compare = transpose(reinterpret(Int,collect(product([0,1],[0,1])),(2,4)));
matrix_to_compare = matrix_to_compare.>0;
find(sum(x.==matrix_to_compare,2).==2)
end

@time map(function_split,large_matrix )
@time pmap(function_split,large_matrix )

5.167820 seconds (22.00 M allocations: 2.899 GB, 12.83% gc time)
18.569198 seconds (40.34 M allocations: 2.082 GB, 5.71% gc time)

正如人们所注意到的,我并没有通过 pmap 获得任何速度提升。也许有人可以提出替代方案。

最佳答案

我认为这里的一些问题是 @parallel@pmap 并不总是能很好地处理与工作人员之间的数据移动。因此,它们往往在您所执行的操作根本不需要太多数据移动的情况下工作得最好。我还怀疑可能可以采取一些措施来提高他们的性能,但我不确定细节。

对于确实需要移动更多数据的情况,最好坚持使用直接调用工作人员函数的选项,然后这些函数访问这些工作人员内存空间内的对象。我在下面给出了一个例子,它可以使用多个工作人员来加速您的功能。它可能使用最简单的选项,即@everywhere,但是@spawn、remotecall()等也值得考虑,具体取决于您的情况。

addprocs(11);

using Distributions;
@everywhere using Iterators;
d = Normal();

eps_1 = rand(d,1000000);
eps_2 = rand(d,1000000);

#Create a large matrix:
large_matrix = hcat(eps_1,eps_2).>=0;
indices = collect(1:4:1000000);

#Split large matrix:
large_matrix = [large_matrix[i:(i+3),:] for i in indices];

large_matrix = convert(Array{BitArray}, large_matrix);

function sendto(p::Int; args...)
for (nm, val) in args
@spawnat(p, eval(Main, Expr(:(=), nm, val)))
end
end

getfrom(p::Int, nm::Symbol; mod=Main) = fetch(@spawnat(p, getfield(mod, nm)))

@everywhere function function_split(x::BitArray)
matrix_to_compare = transpose(reinterpret(Int,collect(product([0,1],[0,1])),(2,4)));
matrix_to_compare = matrix_to_compare.>0;
find(sum(x.==matrix_to_compare,2).==2)
end


function distribute_data(X::Array, WorkerName::Symbol)
size_per_worker = floor(Int,size(X,1) / nworkers())
StartIdx = 1
EndIdx = size_per_worker
for (idx, pid) in enumerate(workers())
if idx == nworkers()
EndIdx = size(X,1)
end
@spawnat(pid, eval(Main, Expr(:(=), WorkerName, X[StartIdx:EndIdx])))
StartIdx = EndIdx + 1
EndIdx = EndIdx + size_per_worker - 1
end
end

distribute_data(large_matrix, :large_matrix)


function parallel_split()
@everywhere begin
if myid() != 1
result = map(function_split,large_matrix );
end
end
results = cell(nworkers())
for (idx, pid) in enumerate(workers())
results[idx] = getfrom(pid, :result)
end
vcat(results...)
end

## results given after running once to compile
@time a = map(function_split,large_matrix); ## 6.499737 seconds (22.00 M allocations: 2.899 GB, 13.99% gc time)
@time b = parallel_split(); ## 1.097586 seconds (1.50 M allocations: 64.508 MB, 3.28% gc time)

julia> a == b
true

注意:即使如此,多个进程的加速也不是完美的。但是,这是可以预料的,因为您的函数仍然会返回适量的数据,并且必须移动这些数据,这需要时间。

附注有关我在此处使用的 sendtogetfrom 函数的更多信息,请参阅这篇文章 ( Julia: How to copy data to another processor in Julia ) 或此包 ( https://github.com/ChrisRackauckas/ParallelDataTransfer.jl )。

关于r - Julia pmap 性能,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38207297/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com