- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是一名从未正式学习过算法的程序员,并且一直想填补我学习中的空白。我目前正在阅读一些书籍和在线资料,我从概念上理解 Big O,即它的用途,以及不同类别的性能,例如常量、线性、二次等。我可以编写问题代码并直观地理解不同方法的性能影响。
但是,我一直被困在算法证明的符号上,我不确定去哪里寻找这部分的答案。我看过的所有书籍都假定了这种知识水平。
例如,Skiena 的算法设计手册中的这句话让我很困惑:
f(n) = O(g(n)) 表示 c * g(n) 是 f(n) 的上限。
因此存在一些常数 c 使得 f(n) 总是 ≤ c * g(n),对于足够大的 n(即对于某个常数 n ≥ n0 n0).
这是读者应该完成的推论:
3n^2 − 100n + 6 = O(n^2),因为我选择 c = 3 和 3n^2 > 3n^2− 100n + 6;
我能理解这两种说法,并且可以从逻辑上看出第二种说法成立。我也理解上限的概念,即这是针对最坏情况的。
但我坚持简单的事情,例如,上面的以下内容指的是什么?
g(n)
对于某个常数 n0,n ≥ n0
总的来说,我无法将各个部分放在一起来理解整个证明。
谁能帮我用简单的英语解析上述陈述,并以一种对非技术人员来说有意义的方式展示它们与练习的关系
最佳答案
我希望你仍然对答案有用:)。
g(n) 是您要与 f(n) 进行比较的函数,它是真正的运行时。例如,您会说冒泡排序是 O(n^2),使得 g(n)=n^2。然而,直觉上,您的算法不会恰好采用 n^2 个时间单位(无论您可能想在此处插入什么时间单位);但是,它可能需要 3n^2 − 100n + 6(即 f(n))个时间单位。
现在,Big-Oh 符号所做的是比较两个函数的增长速度;请注意,这是一个非常粗略的比较。例如,它不会区分需要 f(n)=n^2 时间单位的算法和需要 f(n)=5n^2 的算法,它也不会区分 f(n)=n^2 和 f(n)=n^2+n。这就是 c 发挥作用的地方——如果您能找到任何可以与 g(n) 相乘的常数 c,那么对于每个 n,结果函数返回一个大于 f(n) 的值,然后 f(n) = O(g(n))。
Big-Oh 符号的作用还在于查看 f(n) 中增长最快的部分。假设您想将 f(n) = n+100 与 g(n) = n 进行比较。直觉上,f(n) = O(g(n)),但是没有 c 可以与 g(n) 相乘,因此它总是大于f(n);但是,n 的增长速度明显快于根本没有增长的 100。这就是 n0 最后发挥作用的地方:Big-Oh 表示法“容忍”它,如果 finite 个 n' s, c*g(n) 不大于 f(n),只要它大于 无限 个< strong>n 的。此有限数由 n0 给出 例如,对于所有 n < 1(这是一个有限数:正好是数字 0),f(n)= n+100 可以大于 c*g(n) = c*n,只要对于所有其他 n(无穷大:所有数>=1,使n0=1) f(n)变小。
关于big-o - 用简单的英语解释算法证明,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13492725/
在使用 requests 库中的状态代码时,我遇到了一些奇怪的事情。每个 HTTP 状态代码都有一个常量,有些具有别名(例如,包括 200 的复选标记): url = 'https://httpbin
这是我得到的代码,但我不知道这两行是什么意思: o[arr[i]] = o[arr[i]] || {}; o = o[arr[i]]; 完整代码: var GLOBAL={}; GLOBAL.name
所以这个问题的答案What is the difference between Θ(n) and O(n)? 指出“基本上,当我们说算法是 O(n) 时,它也是 O(n2)、O(n1000000)、O
这是一个快速的想法;有人会说 O(∞) 实际上是 O(1) 吗? 我的意思是它不依赖于输入大小? 所以在某种程度上它是恒定的,尽管它是无限的。 或者是唯一“正确”的表达方式 O(∞)? 最佳答案 无穷
这是真的: log(A) + log(B) = log(A * B) [0] 这也是真的吗? O(log(A)) + O(log(B)) = O(log(A * B)) [1] 据我了解 O(f
我正在解决面试练习的问题,但我似乎无法找出以下问题的时间和空间复杂度的答案: Given two sorted Linked Lists, merge them into a third list i
我了解 Big-Oh 表示法。但是我该如何解释 O(O(f(n))) 是什么意思呢?是指增长率的增长率吗? 最佳答案 x = O(n)基本上意味着 x <= kn对于一些常量 k . 因此 x = O
我正在编写一个函数,该函数需要一个对象和一个投影来了解它必须在哪个字段上工作。 我想知道是否应该使用这样的字符串: const o = { a: 'Hello There' }; funct
直觉上,我认为这三个表达式是等价的。 例如,如果一个算法在 O(nlogn) + O(n) 或 O(nlogn + n) 中运行(我很困惑),我可以假设这是一个O(nlogn) 算法? 什么是真相?
根据 O'Reilly 的 Python in a Nutshell 中的 Alex Martelli,复杂度类 O(n) + O(n) = O(n)。所以我相信。但是我很困惑。他解释说:“N 的两个
O(n^2)有什么区别和 O(n.log(n)) ? 最佳答案 n^2 的复杂性增长得更快。 关于big-o - 大 O 符号 : differences between O(n^2) and O(n
每当我收到来自 MS outlook 的电子邮件时,我都会收到此标记 & nbsp ; (没有空格)哪个显示为?在 <>. 当我将其更改为 ISO-8859-1 时,浏览器页面字符集编码为 UTF-8
我很难理解 Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani - page 24 中的以下陈述它们将 O(n) 的总和表
我在面试蛋糕上练习了一些问题,并在问题 2给出的解决方案使用两个单独的 for 循环(非嵌套),解决方案提供者声称他/她在 O(n) 时间内解决了它。据我了解,这将是 O(2n) 时间。是我想错了吗,
关于 Java 语法的幼稚问题。什么 T accept(ObjectVisitorEx visitor); 是什么意思? C# 的等价物是什么? 最佳答案 在 C# 中它可能是: O Accept(
假设我有一个长度为 n 的数组,我使用时间为 nlogn 的排序算法对它进行了排序。得到这个排序后的数组后,我遍历它以找到任何具有线性时间的重复元素。我的理解是,由于操作是分开发生的,所以时间是 O(
总和 O(1)+O(2)+ .... +O(n) 的计算结果是什么? 我在某处看到它的解决方案: O(n(n+1) / 2) = O(n^2) 但我对此并不满意,因为 O(1) = O(2) = co
这个问题在这里已经有了答案: 11 年前关闭。 Possible Duplicate: Plain english explanation of Big O 我想这可能是类里面教的东西,但作为一个自学
假设我有两种算法: for (int i = 0; i 2)更长的时间给定的一些n - 其中n这种情况的发生实际上取决于所涉及的算法 - 对于您的具体示例, n 2)分别时间,您可能会看到: Θ(n)
这个问题在这里已经有了答案: Example of a factorial time algorithm O( n! ) (4 个回答) 6年前关闭。 我见过表示为 O(X!) 的 big-o 示例但
我是一名优秀的程序员,十分优秀!