gpt4 book ai didi

r - 通过模式匹配熔化柱

转载 作者:行者123 更新时间:2023-12-02 03:37:06 41 4
gpt4 key购买 nike

我有一个非常广泛的数据框架,其中包含标准的人口统计特征(年龄、性别、种族、教育程度、收入等)。我还有受访者对问题的回答,可以用四种方式之一(用“cb”、“lb”、“lw”或“cw”)作为开头。

数据框目前采用宽格式,每行代表单个受访者的答案。我想将其转换为长格式,但我找不到使用 reshape2 库的简单解决方案。

我想将所有人口统计特征保留为自己的列,但将问题、答案、置信度和评分列减少到自己的融合列中。以下是我正在寻找的内容的想法:

string <- "
response_id,age,sex,race_1,race_2,race_3,cb_1,cb_1_conf,cb_1_ans,cb_1_score,lb_1,lb_1_conf,lb_1_ans,lb_1_score
11,25,M,white,NA,NA,Astrophysicist,9,Dog,0,Jackson,8,Jackson,1
22,27,F,NA,black,asian,Monkey,8,Dog,0,Jackson,7,Jackson,1"

x <- read.csv(con <- textConnection(string), header=TRUE)

看起来像这样:

> x
response_id age sex race_1 race_2 race_3 cb_1 cb_1_conf cb_1_ans cb_1_score lb_1 lb_1_conf lb_1_ans lb_1_score
1 11 25 M white <NA> NA Astrophysicist 9 Dog 0 Jackson 8 Jackson 1
2 22 27 F <NA> black NA Monkey 8 Dog 0 Jackson 7 Jackson 1

希望将其转换为这种形式:

string_2 <- "
response_id,age,sex,race,question,response,confidence,correct_answer,score
11,25,M,white,cb_1,Astrophysicist,9,Dog,0
11,25,M,white,lb_1,Jackson,8,Jackson,1
22,27,F,black/asian,cb_1,Monkey,8,Dog,0
22,27,F,black/asian,lb_1,Jackson,8,Jackson,1
"

x_2 <- read.csv(con <- textConnection(string_2), header=TRUE)

response_id age sex race question response confidence correct_answer score
1 11 25 M white cb_1 Astrophysicist 9 Dog 0
2 11 25 M white lb_1 Jackson 8 Jackson 1
3 22 27 F black/asian cb_1 Monkey 8 Dog 0
4 22 27 F black/asian lb_1 Jackson 8 Jackson 1

我尝试对 df 进行子集化,使其仅包含以 cb、lb、cw 或 lw 为前缀的列,后跟以下内容:

    melt(subset, id=c("ResponseID"), 
+ measure.vars=grep("^(CB|LB|LW|CW)", colnames(subset)))

But this doesn't allow me to flexibly melt the _conf columns the _ans columns and the _score columns.

I had to modify Maurits' answer a bit to work better for my case. Here is my solution:

df_test <- df_ans %>%
unite(race, contains("race"), sep = "/") %>% # combine race_1,2,3
mutate(race = str_replace_all(race, "(/NA|NA/)", "")) %>% # replace NA from race
select_all( ~ gsub("(^[A-Z][A-Z]_\\d+$)", "\\1_response", .)) %>% # add "_response" to Q
gather(key, val, -(1:24)) %>% # wide to long
separate(key, c("q1", "q2", "item")) %>% # split into Q + item
unite(question, q1, q2, sep = "_") %>% # [continued]
mutate(item = gsub("_", "", item)) %>% # [continued]
spread(item, val) %>% # long to wide
rename(answer = ans, confidence = con) # rename columns

最佳答案

这是一个tidyverse解决办法:

x %>%
unite(race, contains("race"), sep = "/") %>% # combine race_1,2,3
mutate(race = str_replace_all(race, "(/NA|NA/)", "")) %>% # replace NA from race
select_all( ~ gsub("^(\\w+_\\d)$", "\\1_response", .)) %>% # add "_response" to Q
gather(key, val, -(1:4)) %>% # wide to long
separate(key, c("q1", "q2", "item")) %>% # split into Q + item
unite(question, q1, q2, sep = "_") %>% # [continued]
mutate(item = gsub("_", "", item)) %>% # [continued]
spread(item, val) %>% # long to wide
rename(answer = ans, confidence = conf) # rename columns
# response_id age sex race question answer confidence response
#1 11 25 M white cb_1 Dog 9 Astrophysicist
#2 11 25 M white lb_1 Jackson 8 Jackson
#3 22 27 F black/asian cb_1 Dog 8 Monkey
#4 22 27 F black/asian lb_1 Jackson 7 Jackson
# score
#1 0
#2 1
#3 0
#4 1

说明:

  1. 创建 unite d race基于 race_1, 中的条目race_2 , race_3 , whilst removing不适用。
  2. 剩下的就是 gather ing,spread荷兰国际集团和separate 'ing 条目来分离 question , answer , confidenceresponse .
  3. 我假设所有问题的形式都是 \\w+_\\d (例如 cb_1lb_1 );如有必要,请进行调整。

关于r - 通过模式匹配熔化柱,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49838866/

41 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com