- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我熟悉 Shiny 的基础知识,但在这里遇到了一些困难。我希望能够在单击某个点以突出显示该点时添加 ggplot 图层。我知道 ggvis 可以做到这一点,并且画廊中有一个很好的示例,但我希望能够使用 nearPoints()
来捕获点击作为 ui 输入。
我尝试过一些(见下文),它除了 ggplot 图层之外,还出现然后消失。我已经尝试使用 reactive()
、eventReactive()
等对此进行各种编辑。
非常感谢任何帮助...
library(shiny)
library(ggplot2)
shinyApp(
ui = shinyUI(
plotOutput("plot", click = "clicked")
),
server = shinyServer(function(input, output) {
output$plot <- renderPlot({
ggplot(mtcars, aes(x = mpg, y = wt)) +
geom_point() +
geom_point(data = nearPoints(mtcars, input$clicked), colour = "red", size = 5)
})
})
)
我想我从概念上理解为什么这不起作用。该图依赖于 input$clicked
,这意味着当 input$clicked
更改时,图会重新渲染,但这又会重置 input$clicked
>。有点像第 22 条军规的情况。
最佳答案
请尝试这个:
library(shiny)
library(ggplot2)
# initialize global variable to record selected (clicked) rows
selected_points <- mtcars[0, ]
str(selected_points)
shinyApp(
ui = shinyUI(
plotOutput("plot", click = "clicked")
),
server = shinyServer(function(input, output) {
selected <- reactive({
# add clicked
selected_points <<- rbind(selected_points, nearPoints(mtcars, input$clicked))
# remove _all_ duplicates if any (toggle mode)
# http://stackoverflow.com/a/13763299/3817004
selected_points <<-
selected_points[!(duplicated(selected_points) |
duplicated(selected_points, fromLast = TRUE)), ]
str(selected_points)
return(selected_points)
})
output$plot <- renderPlot({
ggplot(mtcars, aes(x = mpg, y = wt)) +
geom_point() +
geom_point(data = selected(), colour = "red", size = 5)
})
})
)
如果您单击某个点一次,该点就会突出显示。如果您第二次单击它,突出显示将再次关闭(切换)。
代码使用全局变量selected_points
来存储实际突出显示(选定)的点,并使用响应式表达式selected()
,每当单击一个点时都会更新全局变量.
str(selected_points)
可能有助于可视化工作情况,但可以删除。
有一种稍微不同的方法,它使用 observe()
而不是 reactive()
并直接引用全局变量 selected_points
而不是返回来自函数的对象:
library(shiny)
library(ggplot2)
selected_points <- mtcars[0, ]
str(selected_points)
shinyApp(
ui = shinyUI(
plotOutput("plot", click = "clicked")
),
server = shinyServer(function(input, output) {
observe({
# add clicked
selected_points <<- rbind(selected_points, nearPoints(mtcars, input$clicked))
# remove _all_ duplicates (toggle)
# http://stackoverflow.com/a/13763299/3817004
selected_points <<-
selected_points[!(duplicated(selected_points) |
duplicated(selected_points, fromLast = TRUE)), ]
str(selected_points)
})
output$plot <- renderPlot({
# next statement is required for reactivity
input$clicked
ggplot(mtcars, aes(x = mpg, y = wt)) +
geom_point() +
geom_point(data = selected_points, colour = "red", size = 5)
})
})
)
当然,您可以直接在ggplot
调用中使用全局变量selected_points
,而不是调用 react 函数selected()
。但是,您必须确保每当 input$clicked
更改时都会执行 renderPlot()
。因此,对 input$clicked
的虚拟引用必须包含在 renderPlot()
内的代码中。
现在,响应式(Reactive)函数 selected()
不再需要,可以用 observe()
表达式代替。与 reactive()
不同,observe()
不返回值。每当 input$clicked
被修改时,它只会更新全局变量 selected_points
。
这种方法避免了全局变量。相反,它使用 reactiveValues
创建一个类似列表的对象 rv
,具有响应式编程的特殊功能(请参阅 ?reactiveValues
)。
library(shiny)
library(ggplot2)
shinyApp(
ui = shinyUI(
plotOutput("plot", click = "clicked")
),
server = shinyServer(function(input, output) {
rv <- reactiveValues(selected_points = mtcars[0, ])
observe({
# add clicked
rv$selected_points <- rbind(isolate(rv$selected_points),
nearPoints(mtcars, input$clicked))
# remove _all_ duplicates (toggle)
# http://stackoverflow.com/a/13763299/3817004
rv$selected_points <- isolate(
rv$selected_points[!(duplicated(rv$selected_points) |
duplicated(rv$selected_points, fromLast = TRUE)), ])
str(rv$selected_points)
})
output$plot <- renderPlot({
ggplot(mtcars, aes(x = mpg, y = wt)) +
geom_point() +
geom_point(data = rv$selected_points, colour = "red", size = 5)
})
})
)
请注意,在observer
部分中对rv
的引用需要封装在isolate()
中,以确保只有对input$clicked
将触发observer
中代码的执行。否则,我们将陷入无限循环。每当 react 值 rv
发生更改时,就会触发 renderPlot
的执行。
就我个人而言,我更喜欢使用 react 函数的方法 1,这使得依赖关系( react 性)更加明确。我发现方法 2 中对 input$clicked 的虚拟调用不太直观。方法 3 需要彻底了解 react 性并在正确的位置使用 isolate()
。
关于r - 带有nearPoints()的动态ggplot图层 Shiny ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40805513/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!