- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在我的应用程序中,有一个用例来查找距其他地理点最近的点。我决定使用内存空间索引并找到了几个候选索引:jeospatial和 Lucene spatial .
我做了一些基准测试,并惊讶地发现 Lucene 索引结果非常慢。这是来自基准测试的代码,它是用 JMH 完成的。完整的源代码可以在我的GitHub repository中找到.
@State(Scope.Thread)
public class MyBenchmark {
// Lucene
private static final String COORDINATES_FIELD = "coordinates";
private static final int GEO_PRECISION_LEVEL = 5;
private static final double NEARBY_RADIUS_DEGREE = DistanceUtils.dist2Degrees(
50, DistanceUtils.EARTH_MEAN_RADIUS_KM);
private final Directory directory = new RAMDirectory();
private final IndexWriterConfig iwConfig = new IndexWriterConfig();
private IndexWriter indexWriter = null;
private IndexSearcher indexSearcher = null;
private final SpatialContext spatialCxt = SpatialContext.GEO;
private final ShapeFactory shapeFactory = spatialCxt.getShapeFactory();
private final SpatialStrategy coordinatesStrategy = new RecursivePrefixTreeStrategy(
new GeohashPrefixTree(spatialCxt, GEO_PRECISION_LEVEL),
COORDINATES_FIELD);
// Jeospatial
private VPTree<SimpleGeospatialPoint> jeospatialPoints = new VPTree<>();
public MyBenchmark() {
try {
indexWriter = new IndexWriter(directory, iwConfig);
} catch (IOException e) {
e.printStackTrace();
}
}
@Setup
public void init() throws IOException {
var r = new Random();
for (int i = 0; i < 3000; i++) {
double latitude = ThreadLocalRandom.current().nextDouble(50.4D, 51.4D);
double longitude = ThreadLocalRandom.current().nextDouble(8.2D, 11.2D);
Document doc = new Document();
doc.add(new StoredField("id", r.nextInt()));
var point = shapeFactory.pointXY(longitude, latitude);
for (var field : coordinatesStrategy.createIndexableFields(point)) {
doc.add(field);
}
doc.add(new StoredField(coordinatesStrategy.getFieldName(), latitude + ":" + longitude));
indexWriter.addDocument(doc);
jeospatialPoints.add(new MyGeospatialPoint(latitude, longitude));
}
indexWriter.forceMerge(1);
indexWriter.close();
final IndexReader indexReader = DirectoryReader.open(directory);
indexSearcher = new IndexSearcher(indexReader);
}
private SimpleGeospatialPoint createRandomPoint() {
final double latitude = ThreadLocalRandom.current().nextDouble(50.4D, 51.4D);
final double longitude = ThreadLocalRandom.current().nextDouble(8.2D, 11.2D);
return new MyGeospatialPoint(latitude, longitude);
}
@Benchmark
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
@Fork(value = 1)
@Warmup(iterations = 0)
@Measurement(iterations = 3)
public void benchLucene() {
double latitude = ThreadLocalRandom.current().nextDouble(50.4D, 51.4D);
double longitude = ThreadLocalRandom.current().nextDouble(8.2D, 11.2D);
final var spatialArgs = new SpatialArgs(SpatialOperation.IsWithin,
shapeFactory.circle(longitude, latitude, NEARBY_RADIUS_DEGREE));
final Query q = coordinatesStrategy.makeQuery(spatialArgs);
try {
final TopDocs topDocs = indexSearcher.search(q, 1);
if (topDocs.totalHits == 0) {
return;
}
var doc = indexSearcher.doc(topDocs.scoreDocs[0].doc);
var coordinates = doc.getField(COORDINATES_FIELD).stringValue();
} catch (IOException e) {
e.printStackTrace();
}
}
@Benchmark
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
@Fork(value = 1)
@Warmup(iterations = 0)
@Measurement(iterations = 3)
public void benchJeospatial() {
var neighbor = jeospatialPoints.getNearestNeighbor(createRandomPoint(), 50 * 1000);
var n = neighbor.getLatitude();
}
}
在 Lucene 中,我使用 RAMDirectory
,但也尝试过 MMapDirectory
。几乎没有区别。
基准测试结果:
# JMH version: 1.21
# VM version: JDK 10, Java HotSpot(TM) 64-Bit Server VM, 10+46
# VM invoker: /Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home/bin/java
# VM options: <none>
# Warmup: <none>
# Measurement: 3 iterations, 10 s each
# Timeout: 10 min per iteration
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Throughput, ops/time
# Benchmark: org.sample.MyBenchmark.benchJeospatial
# Run progress: 0,00% complete, ETA 00:01:00
# Fork: 1 of 1
Iteration 1: 77528,657 ops/s
Iteration 2: 81921,096 ops/s
Iteration 3: 83470,405 ops/s
Result "org.sample.MyBenchmark.benchJeospatial":
80973,386 ±(99.9%) 56230,060 ops/s [Average]
(min, avg, max) = (77528,657, 80973,386, 83470,405), stdev = 3082,159
CI (99.9%): [24743,326, 137203,446] (assumes normal distribution)
# JMH version: 1.21
# VM version: JDK 10, Java HotSpot(TM) 64-Bit Server VM, 10+46
# VM invoker: /Library/Java/JavaVirtualMachines/jdk-10.jdk/Contents/Home/bin/java
# VM options: <none>
# Warmup: <none>
# Measurement: 3 iterations, 10 s each
# Timeout: 10 min per iteration
# Threads: 1 thread, will synchronize iterations
# Benchmark mode: Throughput, ops/time
# Benchmark: org.sample.MyBenchmark.benchLucene
# Run progress: 50,00% complete, ETA 00:00:31
# Fork: 1 of 1
Iteration 1: 997,103 ops/s
Iteration 2: 1087,487 ops/s
Iteration 3: 1077,964 ops/s
Result "org.sample.MyBenchmark.benchLucene":
1054,184 ±(99.9%) 906,037 ops/s [Average]
(min, avg, max) = (997,103, 1054,184, 1087,487), stdev = 49,663
CI (99.9%): [148,147, 1960,221] (assumes normal distribution)
# Run complete. Total time: 00:01:03
REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on
why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial
experiments, perform baseline and negative tests that provide experimental control, make sure
the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts.
Do not assume the numbers tell you what you want them to tell.
Benchmark Mode Cnt Score Error Units
MyBenchmark.benchJeospatial thrpt 3 80973,386 ± 56230,060 ops/s
MyBenchmark.benchLucene thrpt 3 1054,184 ± 906,037 ops/s
如您所见,Jeospatial 的速度快了约 75 倍。所以我很好奇,如果这确实是真的,或者我只是以某种方式错误地配置了 Lucene。
最佳答案
注意到这是大约一年前发布的。以下内容现在与当时一样相关,但性能要好得多。
不要使用spatial-extras
,使用LatLonPoint
,它是更高效、更直接的 API。
这就是您所需要的:
// add your points to the document
doc.add(new LatLonPoint(fieldName, lat, lon));
// create your distance query
Query q = LatLonPoint.newDistanceQuery(fieldName, centerLat, centerLon, radiusMeters);
您遇到空间附加(在倒排索引中使用前缀树)性能问题的原因有多种:
GEO_PRECISION_LEVEL
)。shapeFactory.circle
的
makeQuery
并不是真正的距离搜索。通过相同的四叉树分解处理圆,以创建近似圆的项(四元胞)集合。然后使用 JTS.relate
对照圆的栅格检查倒排索引中的项,这是一项极其昂贵的操作。LatLonPoint
创建 block KD 树结构而不是使用倒排索引。它是一种专为大规模空间和多维数字而设计的数据结构。它的空间和时间效率更高,并且在非常大的数据集上表现更好。
希望这有帮助!
关于performance - Lucene 内存空间索引性能不佳,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52302394/
我在具有 2CPU 和 3.75GB 内存 (https://aws.amazon.com/ec2/instance-types/) 的 c3.large Amazon EC2 ubuntu 机器上运
我想通过用户空间中的mmap-ing并将地址发送到内核空间从用户空间写入VGA内存(视频内存,而不是缓冲区),我将使用pfn remap将这些mmap-ed地址映射到vga内存(我将通过 lspci
在 Mathematica 中,如果你想让一个函数记住它的值,它在语法上是很轻松的。例如,这是标准示例 - 斐波那契: fib[1] = 1 fib[2] = 1 fib[n_]:= fib[n] =
我读到动态内存是在运行时在堆上分配的,而静态内存是在编译时在堆栈上分配的,因为编译器知道在编译时必须分配多少内存。 考虑以下代码: int n; cin>>n; int a[n]; 如果仅在运行期间读
我是 Python 的新手,但我之前还不知道这一点。我在 for 循环中有一个基本程序,它从站点请求数据并将其保存到文本文件但是当我检查我的任务管理器时,我发现内存使用量只增加了?长时间运行时,这对我
我正在设计一组数学函数并在 CPU 和 GPU(使用 CUDA)版本中实现它们。 其中一些函数基于查找表。大多数表占用 4KB,其中一些占用更多。基于查找表的函数接受一个输入,选择查找表的一两个条目,
读入一个文件,内存被动态分配给一个字符串,文件内容将被放置在这里。这是在函数内部完成的,字符串作为 char **str 传递。 使用 gdb 我发现在行 **(str+i) = fgetc(aFil
我需要证实一个理论。我正在学习 JSP/Java。 在查看了一个现有的应用程序(我没有写)之后,我注意到一些我认为导致我们的性能问题的东西。或者至少是其中的一部分。 它是这样工作的: 1)用户打开搜索
n我想使用memoization缓存某些昂贵操作的结果,这样就不会一遍又一遍地计算它们。 两个memoise和 R.cache适合我的需要。但是,我发现缓存在调用之间并不可靠。 这是一个演示我看到的问
我目前正在分析一些 javascript shell 代码。这是该脚本中的一行: function having() { memory = memory; setTimeout("F0
我有一种情况,我想一次查询数据库,然后再将整个数据缓存在内存中。 我得到了内存中 Elasticsearch 的建议,我用谷歌搜索了它是什么,以及如何在自己的 spring boot 应用程序中实现它
我正在研究 Project Euler (http://projecteuler.net/problem=14) 的第 14 题。我正在尝试使用内存功能,以便将给定数字的序列长度保存为部分结果。我正在
所以,我一直在做 Java 内存/注意力游戏作业。我还没有达到我想要的程度,它只完成了一半,但我确实让 GUI 大部分工作了......直到我尝试向我的框架添加单选按钮。我认为问题可能是因为我将 JF
我一直在尝试使用 Flask-Cache 的 memoize 功能来仅返回 statusTS() 的缓存结果,除非在另一个请求中满足特定条件,然后删除缓存。 但它并没有被删除,并且 Jinja 模板仍
我对如何使用 & 运算符来减少内存感到非常困惑。 我可以回答下面的问题吗? clase C{ function B(&$a){ $this->a = &$a; $thi
在编写代码时,我遇到了一个有趣的问题。 我有一个 PersonPOJO,其 name 作为其 String 成员之一及其 getter 和 setter class PersonPOJO { priv
在此代码中 public class Base { int length, breadth, height; Base(int l, int b, int h) { l
Definition Structure padding is the process of aligning data members of the structure in accordance
在 JavaScript Ninja 的 secret 中,作者提出了以下方案,用于在没有闭包的情况下内存函数结果。他们通过利用函数是对象这一事实并在函数上定义一个属性来存储过去调用函数的结果来实现这
我正在尝试找出 map 消耗的 RAM 量。所以,我做了以下事情;- Map cr = crPair.collectAsMap(); // 200+ entries System.out.printl
我是一名优秀的程序员,十分优秀!