- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
进入实际问题需要一段时间,所以请耐心等待。 The AdaBoost documentation指出它“是一个元估计器,首先在原始数据集上拟合分类器,然后在同一数据集上拟合分类器的其他副本,但调整了错误分类实例的权重”。为此,必需的参数之一是 base_estimator
。对于可与 AdaBoostClassifer
一起使用的 base_estimator
,“需要支持样本加权”。
所以我的第一个问题是 - 哪些分类器支持样本加权?我做了一些研究,幸运的是,someone smarter than me had the answer .有点更新,它是这样工作的:通过运行
from sklearn.utils.testing import all_estimators
print(all_estimators(type_filter='classifier'))
您会得到所有分类器的列表(原来有 31 个!)。然后,如果你运行
import inspect
for name, clf in all_estimators(type_filter='classifier'):
if 'sample_weight' in inspect.getfullargspec(clf().fit)[0]:
print(name)
您可以获得支持样本加权的所有分类器的列表(其中 21 个,出于好奇)。
到目前为止一切顺利。但现在我们必须处理另一个 AdaBoostClassifer
参数,即 algorithm
。您有两个选项:{‘SAMME’, ‘SAMME.R’},可选 (default=’SAMME.R’)
。我们被告知“使用 SAMME.R 真实增强算法 base_estimator
必须支持类概率的计算”。这就是我被困的地方。在线搜索,我只能找到两个与“SAMME.R”一起用作 algorithm
参数的分类器:DecisionTreeClassifier
(默认)和 RandomForestClassifier
.
那么问题来了 - 21 个与 AdaBoostClassifer
兼容的分类器中还有哪些分类器支持类别概率的计算?
谢谢。
最佳答案
我很确定当文档提到“必须支持类概率的计算”时,它们意味着有一个 predict_proba
方法。
这是许多分类器用来返回给定观察的每个类的概率的方法。有了这种理解,您只需要检查具有 predict_proba
方法的分类器:
for name, clf in all_estimators(type_filter='classifier'):
if hasattr(clf, 'predict_proba'):
print(clf, name)
<class 'sklearn.ensemble.weight_boosting.AdaBoostClassifier'> AdaBoostClassifier
<class 'sklearn.ensemble.bagging.BaggingClassifier'> BaggingClassifier
<class 'sklearn.naive_bayes.BernoulliNB'> BernoulliNB
<class 'sklearn.calibration.CalibratedClassifierCV'> CalibratedClassifierCV
<class 'sklearn.naive_bayes.ComplementNB'> ComplementNB
<class 'sklearn.tree.tree.DecisionTreeClassifier'> DecisionTreeClassifier
<class 'sklearn.tree.tree.ExtraTreeClassifier'> ExtraTreeClassifier
<class 'sklearn.ensemble.forest.ExtraTreesClassifier'> ExtraTreesClassifier
<class 'sklearn.naive_bayes.GaussianNB'> GaussianNB
<class 'sklearn.gaussian_process.gpc.GaussianProcessClassifier'> GaussianProcess
Classifier
<class 'sklearn.ensemble.gradient_boosting.GradientBoostingClassifier'> GradientBoosti
ngClassifier
<class 'sklearn.neighbors.classification.KNeighborsClassifier'> KNeighborsClassifier
<class 'sklearn.semi_supervised.label_propagation.LabelPropagation'> LabelPropagation
<class 'sklearn.semi_supervised.label_propagation.LabelSpreading'> LabelSpreading
<class 'sklearn.discriminant_analysis.LinearDiscriminantAnalysis'> LinearDiscriminantA
nalysis
<class 'sklearn.linear_model.logistic.LogisticRegression'> LogisticRegression
<class 'sklearn.linear_model.logistic.LogisticRegressionCV'> LogisticRegressionCV
<class 'sklearn.neural_network.multilayer_perceptron.MLPClassifier'> MLPClassifier
<class 'sklearn.naive_bayes.MultinomialNB'> MultinomialNB
<class 'sklearn.svm.classes.NuSVC'> NuSVC
<class 'sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis'> QuadraticDiscrim
inantAnalysis
<class 'sklearn.ensemble.forest.RandomForestClassifier'> RandomForestClassifier
<class 'sklearn.linear_model.stochastic_gradient.SGDClassifier'> SGDClassifier
<class 'sklearn.svm.classes.SVC'> SVC
因此,您最终将 31 个分类器中的 24 个作为 AdaBoostClassifier
中 base_estimator
的潜在选项。
使用不正确的分类器作为 base_estimator
返回的错误在这方面也很有帮助。
TypeError: AdaBoostClassifier with algorithm='SAMME.R' requires that the weak learner supports the calculation of class probabilities with a predict_proba method. Please change the base estimator or set algorithm='SAMME' instead.
如您所见,该错误特别指出了使用 predict_proba
方法的类。
关于scikit-learn - AdaBoostClassifier 和 'SAMME.R’ 算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54910861/
来自文档: sklearn.preprocessing.MinMaxScaler.min_ : ndarray, shape (n_features,) Per feature adjustment
这是我的数据:(我重置了索引。日期应该是索引) Date A B C D 0 2013-10-07 -0.002
我正在构建一个分类器,通过贷款俱乐部数据,选择最好的 X 笔贷款。我训练了一个随机森林,并创建了通常的 ROC 曲线、混淆矩阵等。 混淆矩阵将分类器的预测(森林中树木的多数预测)作为参数。但是,我希望
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我有一个预定义的决策树,它是根据基于知识的拆分构建的,我想用它来进行预测。我可以尝试从头开始实现决策树分类器,但那样我就无法在 Scikit 函数中使用 predict 等内置函数。有没有办法将我的树
我正在使用随机森林解决分类问题。为此,我决定使用 Python 库 scikit-learn。但我对随机森林算法和这个工具都很陌生。我的数据包含许多因子变量。我用谷歌搜索,发现像我们在线性回归中所做的
我使用 Keras 回归器对数据进行回归拟合。我使用 Scikit-learn wrapper 和 Pipeline 来首先标准化数据,然后将其拟合到 Keras 回归器上。有点像这样: from s
在 scikit-learn ,有一个 的概念评分函数 .如果我们有一些预测标签和真实标签,我们可以通过调用 scoring(y_true, y_predict) 来获得分数。 .这种评分函数的一个例
我知道 train_test_split 方法将数据集拆分为随机训练和测试子集。并且使用 random_state=int 可以确保每次调用该方法时我们对该数据集都有相同的拆分。 我的问题略有不同。
我正在使用 scikit-learn 0.18.dev0。我知道之前有人问过完全相同的问题 here .我尝试了那里提供的答案,但出现以下错误 >>> def mydist(x, y): ...
我试图在 scikit-learn 中结合递归特征消除和网格搜索。正如您从下面的代码(有效)中看到的那样,我能够从网格搜索中获得最佳估计量,然后将该估计量传递给 RFECV。但是,我宁愿先进行 RFE
我是一名优秀的程序员,十分优秀!