gpt4 book ai didi

r - 世界地图与 ggmap

转载 作者:行者123 更新时间:2023-12-02 03:07:39 28 4
gpt4 key购买 nike

我正在使用 ggmap,希望有一张以澳大利亚为中心的世界地图,我可以轻松地绘制地理编码点。与其他一些 map 包相比,ggmap 似乎更容易使用。然而,当我使用下面的代码浏览 map 时,它会出错。

gc <- geocode('australia')
center <- as.numeric(gc)
> map <- get_map(location = center, source="google", maptype="terrain", zoom=0)
Error: zoom must be a whole number between 1 and 21

来自 get_map 帮助:"zoom: map 缩放,从0(全世界)到21(建筑物)的整数,默认值10(城市)。openstreetmaps限制缩放为18,花蕊 map 的限制取决于 map 类型。‘auto’自动确定边界框规范的缩放,并且中心/缩放规范默认为 10。”

将缩放更改为 1 对于 get_map 不会出错,但对于绘制该 map 会出错

map <- get_map(location = center, source="google", maptype="terrain", zoom=1)
ggmap(map)

Warning messages:
1: In min(x) : no non-missing arguments to min; returning Inf
2: In max(x) : no non-missing arguments to max; returning -Inf
3: In min(x) : no non-missing arguments to min; returning Inf
4: In max(x) : no non-missing arguments to max; returning -Inf

看起来经度没有被拉过。最后,缩放为 2 时,它确实可以工作,但无法显示整个世界的 map

所以,我的问题是如何使用 get_map 来获取世界地图?

session 信息:

sessionInfo() R version 2.15.0 (2012-03-30) Platform: i386-pc-mingw32/i386 (32-bit)

locale:
[1] LC_COLLATE=English_United Kingdom.1252
[2] LC_CTYPE=English_United Kingdom.1252
[3] LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United Kingdom.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] mapproj_1.1-8.3 maps_2.2-6 rgdal_0.7-12 sp_0.9-99
[5] ggmap_2.1 ggplot2_0.9.1

loaded via a namespace (and not attached):
[1] colorspace_1.1-1 dichromat_1.2-4 digest_0.5.2 grid_2.15.0
[5] labeling_0.1 lattice_0.20-6 MASS_7.3-17 memoise_0.1
[9] munsell_0.3 plyr_1.7.1 png_0.1-4 proto_0.3-9.2
[13] RColorBrewer_1.0-5 reshape2_1.2.1 RgoogleMaps_1.2.0 rjson_0.2.8
[17] scales_0.2.1 stringr_0.6 tools_2.15.0

最佳答案

编辑:更新至 ggplot2 v 0.9.3

我最近尝试了类似的方法,但收效甚微。然而,有多种方法可以使世界地图以 map 为中心。封装:见here , here ,和here 。使用后者的代码,下面的示例将世界地图以经度 160 为中心,在使用 ggplot2 绘制的世界地图上绘制 CRAN 镜像位置(使用 ggmap 包中的 geocode() 函数获得的坐标),并为新西兰绘制颜色(使用geom_polygon)。将 map 以经度 160 为中心,使整个非洲位于 map 左侧,格陵兰岛大部分地区位于 map 右侧。

library(maps)
library(plyr)
library(ggplot2)
library(sp)
library(ggmap)

# Get some points to plot - CRAN Mirrors
Mirrors = getCRANmirrors(all = FALSE, local.only = FALSE)

Mirrors$Place = paste(Mirrors$City, ", ", Mirrors$Country, sep = "") # Be patient
tmp = geocode(Mirrors$Place)
Mirrors = cbind(Mirrors, tmp)

###################################################################################################
# Recentre worldmap (and Mirrors coordinates) on longitude 160
### Code by Claudia Engel March 19, 2012, www.stanford.edu/~cengel/blog

### Recenter ####
center <- 160 # positive values only

# shift coordinates to recenter CRAN Mirrors
Mirrors$long.recenter <- ifelse(Mirrors$lon < center - 180 , Mirrors$lon + 360, Mirrors$lon)

# shift coordinates to recenter worldmap
worldmap <- map_data ("world")
worldmap$long.recenter <- ifelse(worldmap$long < center - 180 , worldmap$long + 360, worldmap$long)

### Function to regroup split lines and polygons
# Takes dataframe, column with long and unique group variable, returns df with added column named group.regroup
RegroupElements <- function(df, longcol, idcol){
g <- rep(1, length(df[,longcol]))
if (diff(range(df[,longcol])) > 300) { # check if longitude within group differs more than 300 deg, ie if element was split
d <- df[,longcol] > mean(range(df[,longcol])) # we use the mean to help us separate the extreme values
g[!d] <- 1 # some marker for parts that stay in place (we cheat here a little, as we do not take into account concave polygons)
g[d] <- 2 # parts that are moved
}
g <- paste(df[, idcol], g, sep=".") # attach to id to create unique group variable for the dataset
df$group.regroup <- g
df
}

### Function to close regrouped polygons
# Takes dataframe, checks if 1st and last longitude value are the same, if not, inserts first as last and reassigns order variable
ClosePolygons <- function(df, longcol, ordercol){
if (df[1,longcol] != df[nrow(df),longcol]) {
tmp <- df[1,]
df <- rbind(df,tmp)
}
o <- c(1: nrow(df)) # rassign the order variable
df[,ordercol] <- o
df
}

# now regroup
worldmap.rg <- ddply(worldmap, .(group), RegroupElements, "long.recenter", "group")

# close polys
worldmap.cp <- ddply(worldmap.rg, .(group.regroup), ClosePolygons, "long.recenter", "order") # use the new grouping var
#############################################################################

# Plot worldmap using data from worldmap.cp
windows(9.2, 4)
worldmap = ggplot(aes(x = long.recenter, y = lat), data = worldmap.cp) +
geom_polygon(aes(group = group.regroup), fill="#f9f9f9", colour = "grey65") +
scale_y_continuous(limits = c(-60, 85)) +
coord_equal() + theme_bw() +
theme(legend.position = "none",
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
#axis.text.x = element_blank(),
axis.text.y = element_blank(),
axis.ticks = element_blank(),
panel.border = element_rect(colour = "black"))

# Plot the CRAN Mirrors
worldmap = worldmap + geom_point(data = Mirrors, aes(long.recenter, lat),
colour = "red", pch = 19, size = 3, alpha = .4)

# Colour New Zealand
# Take care of variable names in worldmap.cp
head(worldmap.cp)
worldmap + geom_polygon(data = subset(worldmap.cp, region == "New Zealand", select = c(long.recenter, lat, group.regroup)),
aes(x = long.recenter, y = lat, group = group.regroup), fill = "blue")

enter image description here

关于r - 世界地图与 ggmap,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/11201997/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com