- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
正如数百人在我之前尝试过的那样,我正在尝试通过证明极其基本的数学定理来学习伊莎贝尔。这项任务很困难,因为出于某种原因,大多数 Isabelle 教程和书籍都侧重于程序分析(列表、树、递归函数)或基本命题/一阶逻辑,其中的练习很大程度上可以通过 (induct_tac "xs")
来解决。和一些 apply 语句。
然而,通过深入研究现有的伊莎贝尔理论,我已经弄清楚了如何定义某些东西。在本例中,我定义了序列的极限:
theory Exercises
imports Main "Isabelle2019.app/Contents/Resources/Isabelle2019/src/HOL/Rat"
begin
definition limit :: "(nat ⇒ rat) ⇒ rat ⇒ bool"
where limit_def: "limit sequence l = (∃(d::nat). ∀(e::nat)≥d. ∀(ε::rat). abs((sequence d) - l) ≤ ε)"
end
然后我试图证明lim 1/n --> 0
。 (抱歉,Latex 不适用于 Stack Overflow)。
我想到的证明非常简单:给我一个 epsilon
,我将向您展示 d
之后1/d < epsilon
。然而,在执行了几个最基本的步骤后我陷入了困境。我可以获得有关如何完成此证明的提示吗?
lemma limit_simple: "limit (λ (x::nat). (Fract 1 (int x))) (rat 0)"
unfolding limit_def
proof
fix ε::rat
obtain d_rat::rat where d_rat: "(1 / ε) < d_rat" using linordered_field_no_ub by auto
then obtain d_int::int where d_int: "d_int = (⌊d_rat⌋ + 1)" by auto
then obtain d::nat where "d = max(d_int, 0)"
end
从这个证明的第一行就可以看出,我已经在试图说服伊莎贝尔有一个自然数 d
了。大于1/epsilon
对于每一个理性epsilon
...
最佳答案
首先,您对limit
的定义是错误的。您有点混淆了量词顺序。我会这样写:
definition limit :: "(nat ⇒ rat) ⇒ rat ⇒ bool"
where "limit sequence l = (∀ε>0. ∃d. ∀e≥d. ¦sequence e - l¦ ≤ ε)"
然后这是如何证明你想要的东西:
lemma limit_simple: "limit (λ(x::nat). 1 / of_nat x) 0"
unfolding limit_def
proof (intro allI impI)
fix ε :: rat assume "ε > 0"
obtain d_rat::rat where d_rat: "1 / ε < d_rat" using linordered_field_no_ub by auto
define d where "d = nat (⌊d_rat⌋ + 1)"
have "d_rat ≤ of_nat d"
unfolding d_def by linarith
from ‹ε > 0› have "0 < 1 / ε" by simp
also have "1 / ε < d_rat" by fact
also have "d_rat ≤ of_nat d" by fact
finally have "d > 0" by simp
have "d_rat > 0" using ‹1 / ε > 0› and d_rat by linarith
have "∀e≥d. ¦1 / of_nat e - 0¦ ≤ ε"
proof (intro allI impI)
fix e :: nat
assume "d ≤ e"
have "¦1 / rat_of_nat e - 0¦ = 1 / rat_of_nat e" by simp
have "d_rat ≤ rat_of_nat e"
using ‹d ≤ e› and ‹d_rat ≤ of_nat d› by simp
hence "1 / rat_of_nat e ≤ 1 / d_rat"
using ‹d ≤ e› and ‹d > 0› and ‹d_rat > 0›
by (intro divide_left_mono) auto
also have "1 / d_rat < ε"
using ‹ε > 0› and ‹d_rat > 0› and d_rat by (auto simp: field_simps)
finally show "¦1 / rat_of_nat e - 0¦ ≤ ε" by simp
qed
thus "∃d. ∀e≥d. ¦1 / of_nat e - 0¦ ≤ ε"
by auto
qed
对于实数而不是有理数,证明看起来基本相同。它当然可以更加自动化(好吧,如果你导入 Isabelle 的分析库,它可以一步自动证明整个事情)。
在“现实世界”Isabelle 中,限制是通过过滤器来表达的,并且围绕它们有一个大型库。这使得诸如上述的证明陈述变得不再那么乏味。
更新:回复您的评论:是的,这有点长。用惯用的伊莎贝尔语,我会写出这样的证明:
lemma A: "filterlim (λn. 1 / real n) (nhds 0) sequentially"
proof
fix ε :: real assume "ε > 0"
have "∀⇩F n in sequentially. n > nat ⌈1 / ε⌉"
by (rule eventually_gt_at_top)
hence "∀⇩F n in sequentially. real n > 1 / ε"
by eventually_elim (use ‹ε > 0› in linarith)
moreover have "∀⇩F n in sequentially. n > 0"
by (rule eventually_gt_at_top)
ultimately show "∀⇩F n in sequentially. dist (1 / real n) 0 < ε"
by eventually_elim (use ‹ε > 0› in ‹auto simp: field_simps›)
qed
过滤器和持有“最终”属性的概念(这就是 ∀⇩F
语法的含义)非常强大。
更好的是,您可以将上述证明进一步模块化,首先显示 1/x
对于 x
→ 对于实数 x 趋向于 0
,然后证明对于 n
来说,real n
趋向于实数 Infinity → 对于自然 n
来说是 Infinity,然后简单地将这两个结合起来声明:
lemma B: "filterlim (λx::real. 1 / x) (nhds 0) at_top"
proof
fix ε :: real assume "ε > 0"
have "∀⇩F x in at_top. x > 1 / ε"
by (rule eventually_gt_at_top)
thus "∀⇩F (x::real) in at_top. dist (1 / x) 0 < ε"
using eventually_gt_at_top[of 0]
by eventually_elim (use ‹ε > 0› in ‹auto simp: field_simps›)
qed
lemma C: "filterlim real at_top sequentially"
unfolding filterlim_at_top
proof
fix C :: real
have "∀⇩F n in sequentially. n ≥ nat ⌈C⌉"
by (rule eventually_ge_at_top)
thus "∀⇩F n in sequentially. C ≤ real n"
by eventually_elim linarith
qed
lemma D: "filterlim (λn. 1 / real n) (nhds 0) sequentially"
by (rule filterlim_compose[OF B C])
或者,当然,您可以简单地导入 HOL-Real_Asymp.Real_Asymp
,然后所有这些都将使用 by real_asymp
自动完成。 ;)
你真的不应该根据从头开始做所有事情的难度来判断一个系统,特别是当有一种既定的惯用方式来完成这些事情并且你正在积极地做一些不同的事情时。标准库及其惯用法是系统的重要组成部分。
在证明助手中模拟纸笔式推理是很困难的,尤其是在渐近学这样的领域,许多事情都是“显而易见的”。幸运的是,有了一个好的库,确实可以实现这种推理的某种近似。当然,如果您愿意,您可以进行明确的 ε-δ 推理,但这只会让您的生活变得更加困难。当我开始在 Isabelle 中使用极限时,我犯了同样的错误(因为 ε-δ 是处理我所知道的极限的唯一正式方法,而且我不理解所有那些花哨的过滤器的东西),但是当我开始理解过滤器时,我犯了同样的错误更多,事情变得更清晰、更容易、更自然。
关于isabelle - 基本伊莎贝尔序列极限证明,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58855516/
我需要在一篇论文中做一个演示,该论文在某些时候使用了 Isabelle/Isar 和 Isabelle/HOL。 我尝试在线研究 Isabelle/HOL 和 Isabelle/Isar,以便能够在一
我想在一个名为 List 的理论中定义我自己的列表类型,但已经有一个同名的理论。 有没有比Main更轻量级的理论? ? 最佳答案 请注意 $ISABELLE_HOME/src/HOL/ex/Seq.t
Isabelle 中的“商型模式”是什么? 我在互联网上找不到任何解释。 最佳答案 如果你能从你看到这句话的地方引用一点会更好。我知道“模式匹配”,我知道“商类型”,但我不知道“商类型模式”。 我宁愿
有时我发现很难使用 Isabelle,因为我无法像在正常编程中那样使用“打印命令”。 比如我想看什么?thesis .具体语义书说: The unknown ?thesis is implicitly
我是 isabelle 的新手,并试图证明以下简单的不等式: lemma ineq: "(a::real) > 0 ⟹ a 0 ⟹ b 0" proof have "1/a + 1/b >
输入以下定义时 datatype env = "nat => 'a option" Isabelle/jedit 显示一个感叹号并说 Legacy feature! Bad name binding:
在 Isabelle 中,有时会遇到存在重复子目标的场景。例如,想象以下证明脚本: lemma "a ∧ a" apply (rule conjI) 目标: proof (prove): step
Isabelle/jEdit 中的颜色代码是什么意思?我在 Isabelle/jEdit manual 中找不到他们的描述.它唯一写的是 Prover feedback works via color
如何在 Isabelle 中定义常量集?例如像 {1,2,3}(给它一个更有趣的转折,1,2,3 是实数),或 {x\in N: x < m},其中 m 是某个固定数字 - 或者,也许更难,集合 {N
假设我在 Isabelle 中写了一个引理“(∀a. P a ⟹ Q a) ⟹ R b”。 ∀a只会量化 P a .如果我想量化超过 P a ⟹ Q a但是,在 ∀a 后面加上括号(即“(∀a. (P
使用 Isar 时,我发现了一个令人惊讶的行为(对我而言)。 我尝试使用假设,有时 Isar 提示它无法解决未决目标,例如我最典型的例子是有一个假设但无法假设它: lemma assumes "A
在伊莎贝尔中,人们通常可以达到证明目标,其中中间类型的术语对于证明的正确性至关重要。例如,考虑以下引理,将 nat 42 转换为 'a word,然后再返回: theory Test imports
已关注 how-to-use-persistent-heap-images-to-make-loading-of-theories-faster-in-isabelle另一个建议是我为 Nominal
我尝试使用 partial_function 关键字定义部分函数。它不起作用。这是最能表达直觉的: partial_function (tailrec) oddity :: "nat => nat"
我知道如何在 Isabelle 中制作“术语缩写”,但我可以制作行为相同的“类型缩写”吗? 我可以定义一个“术语缩写”使用 abbreviation "foo == True" 从此以后,输出中出现的
如何在 Isabelle 中将集合转换为列表? 我对带有签名的函数定义感兴趣: "'a set => 'a list" 我该如何定义? 最佳答案 通过搜索 "'a set" "'a list"在我偶然
我想用简化词来替换不等式的子项。我将通过一个示例来说明这一点,而不是对我的问题进行通用定义: 假设我有一个简单的编程语言和一个基于它的 Hoare 逻辑。假设我们有 if、while 和序列操作。此外
我是一名刚开始习惯 Isabelle 的数学家,而本应非常简单的事情却令人沮丧。如何定义两个常量之间的函数?比如说,函数 f: {1,2,3}\to {1,2,4} 映射 1 到 1、2 到 4 和
我想找到定理。我已阅读 find_theorems 上的部分在 Isabelle/Isar reference manual : find_theorems criteria Retrieves fa
我试图在 Isabelle/HOL 中证明这个引理。 引理“(0::nat) ≠ undefined” 但是挑剔的人找到了这个和它的否定的反例 引理“(0::nat) = undefined” 这怎么
我是一名优秀的程序员,十分优秀!