gpt4 book ai didi

R - 使用 'stat_compare_means' 重新格式化 ggplot 中的 P 值

转载 作者:行者123 更新时间:2023-12-02 03:03:37 25 4
gpt4 key购买 nike

我想在多面 ggplot 中绘制每个面板的 p 值。如果 p 值大于 0.05,我想按原样显示 p 值。如果 p 值小于 0.05,我想以科学计数法显示该值(即 0.0032 -> 3.20e-3;0.0000425 -> 4.25e-5)。

我为此编写的代码是:

   p1 <- ggplot(data = CD3, aes(location, value, color = factor(location),
fill = factor(location))) +
theme_bw(base_rect_size = 1) +
geom_boxplot(alpha = 0.3, size = 1.5, show.legend = FALSE) +
geom_jitter(width = 0.2, size = 2, show.legend = FALSE) +
scale_color_manual(values=c("#4cdee6", "#e47267", "#13ec87")) +
scale_fill_manual(values=c("#4cdee6", "#e47267", "#13ec87")) +
ylab(expression(paste("Density of clusters, ", mm^{-2}))) +
xlab(NULL) +
stat_compare_means(comparisons = list(c("CT", 'N'), c("IF","N")),
aes(label = ifelse(..p.format.. < 0.05, formatC(..p.format.., format = "e", digits = 2),
..p.format..)),
method = 'wilcox.test', show.legend = FALSE, size = 10) +
#ylab(expression(paste('Density, /', mm^2, )))+
theme(axis.text = element_text(size = 10),
axis.title = element_text(size = 20),
legend.text = element_text(size = 38),
legend.title = element_text(size = 40),
strip.background = element_rect(colour="black", fill="white", size = 2),
strip.text = element_text(margin = margin(10, 10, 10, 10), size = 40),
panel.grid = element_line(size = 1.5))
plot(p1)

这段代码运行没有错误,但是数字的格式没有改变。我究竟做错了什么? enter image description here我附上数据来重现该图:donwload data here

编辑

structure(list(value = c(0.931966449207829, 3.24210526315789, 
3.88811650210901, 0.626860993574675, 4.62085308056872, 0.477508650519031,
0.111900110501359, 3.2495164410058, 4.06626506024096, 0.21684918139434,
1.10365086026018, 4.66666666666667, 0.174109967855698, 0.597625869832174,
2.3758865248227, 0.360751947840548, 1.00441501103753, 3.65168539325843
), Criteria = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Density", "Density of cluster",
"nodular count", "Elongated count"), class = "factor"), Case = structure(c(1L,
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L,
6L), .Label = c("Case 1A", "Case 1B", "Case 2", "Case 3", "Case 4",
"Case 5"), class = "factor"), Mark = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("CD3",
"CD4", "CD8", "CD20", "FoxP3"), class = "factor"), location = structure(c(3L,
1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L,
2L), .Label = c("CT", "IF", "N"), class = "factor")), row.names = c(91L,
92L, 93L, 106L, 107L, 108L, 121L, 122L, 123L, 136L, 137L, 138L,
151L, 152L, 153L, 166L, 167L, 168L), class = "data.frame")

最佳答案

我认为您的问题来自 stat_compare_means以及 comparisons 的使用。我不完全确定,但我猜测 stat_compare_means 的 p 值的输出与 compare_means 不同因此,您不能将其用于 aeslabel .

让我解释一下,用你的例子,你可以像这样修改p.value的显示:

library(ggplot2)
library(ggpubr)
ggplot(df, aes(x = location, y = value, color = location))+
geom_boxplot()+
stat_compare_means(ref.group = "N", aes(label = ifelse(p < 0.05,sprintf("p = %2.1e", as.numeric(..p.format..)), ..p.format..)))

enter image description here

您得到了正确显示的 p.value,但丢失了条形图。所以,如果你使用comparisons论证,你得到:

library(ggplot2)
library(ggpubr)
ggplot(df, aes(x = location, y = value, color = location))+
geom_boxplot()+
stat_compare_means(comparisons = list(c("CT","N"), c("IF","N")), aes(label = ifelse(p < 0.05,sprintf("p = %2.1e", as.numeric(..p.format..)), ..p.format..)))

enter image description here

所以,现在,您会看到条形图,但显示不正确。

要解决此问题,您可以使用 compare_means 在 ggplot2 之外执行统计。函数并使用包ggsignif以显示正确的显示。

在这里,我使用dplyr和函数 mutate创建新列,但您可以在 base 中轻松完成R。

library(dplyr)
library(magrittr)
c <- compare_means(value~location, data = df, ref.group = "N")
c %<>% mutate(y_pos = c(5,5.5), labels = ifelse(p < 0.05, sprintf("%2.1e",p),p))

# A tibble: 2 x 10
.y. group1 group2 p p.adj p.format p.signif method y_pos labels
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr> <dbl> <chr>
1 value N CT 0.00866 0.017 0.0087 ** Wilcoxon 5 8.7e-03
2 value N IF 0.00866 0.017 0.0087 ** Wilcoxon 5.5 8.7e-03

然后,您可以绘制它:

library(ggplot2)
library(ggpubr)
library(ggsignif)
ggplot(df, aes(x = location, y = value))+
geom_boxplot(aes(colour = location))+
ylim(0,6)+
geom_signif(data = as.data.frame(c), aes(xmin=group1, xmax=group2, annotations=labels, y_position=y_pos),
manual = TRUE)

enter image description here

它看起来像你想要绘制的吗?

关于R - 使用 'stat_compare_means' 重新格式化 ggplot 中的 P 值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59494698/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com