gpt4 book ai didi

python - MNIST 数字的神经网络根本不学习 - 反向传播问题

转载 作者:行者123 更新时间:2023-12-02 02:53:44 25 4
gpt4 key购买 nike

很长一段时间后,我仍然无法在没有任何错误的情况下运行我的神经网络。这个玩具 nn 的准确率是惊人的 1-2%(隐藏层 60 个神经元,100 个 epoch,0.3 学习率,tanh 激活,通过 TF 下载的 MNIST 数据集)——所以基本上它根本没有学习。经过这么长时间的观看有关反向传播的视频/帖子后,我仍然无法修复它。所以我的错误一定是在标有两行 ##### 的部分之间。我认为我对导数的理解总体上很好,但我无法将这些知识与反向传播联系起来。如果反向传播基数是正确的,那么错误一定在 axis = 0/1 处,因为我也无法理解,如何确定我将在哪个轴上工作。

另外,我有一种强烈的感觉,dZ2 = A2 - Y可能是错误的,应该是dZ2 = Y - A2,但是在更正之后,nn开始只能猜测一个数字。

(是的,反向传播本身我还没有写,我在互联网上找到了它)

#importing data and normalizing it
#"x_test" will be my X
#"y_test" will be my Y

import tensorflow as tf
(traindataX, traindataY), (testdataX, testdataY) = tf.keras.datasets.mnist.load_data()
x_test = testdataX.reshape(testdataX.shape[0], testdataX.shape[1]**2).astype('float32')
x_test = x_test / 255

y_test = testdataY
y_test = np.eye(10)[y_test]
#Activation functions:
def tanh(z):
a = (np.exp(z)-np.exp(-z))/(np.exp(z)+np.exp(-z))
return a
###############################################################################START
def softmax(z):
smExp = np.exp(z - np.max(z, axis=0))
out = smExp / np.sum(smExp, axis=0)
return out
###############################################################################STOP
def neural_network(num_hid, epochs, 
learning_rate, X, Y):
#num_hid - number of neurons in the hidden layer
#X - dataX - shape (10000, 784)
#Y - labels - shape (10000, 10)

#inicialization
W1 = np.random.randn(784, num_hid) * 0.01
W2 = np.random.randn(num_hid, 10) * 0.01
b1 = np.zeros((1, num_hid))
b2 = np.zeros((1, 10))
correct = 0

for x in range(1, epochs+1):
#feedforward
Z1 = np.dot(X, W1) + b1
A1 = tanh(Z1)
Z2 = np.dot(A1, W2) + b2
A2 = softmax(Z2)


###############################################################################START
m = X.shape[1] #-> 784
loss = - np.sum((Y * np.log(A2)), axis=0, keepdims=True)
cost = np.sum(loss, axis=1) / m

#backpropagation
dZ2 = A2 - Y
dW2 = (1/m)*np.dot(A1.T, dZ2)
db2 = (1/m)*np.sum(dZ2, axis = 1, keepdims = True)
dZ1 = np.multiply(np.dot(dZ2, W2.T), 1 - np.power(A1, 2))
dW1 = (1/m)*np.dot(X.T, dZ1)
db1 = (1/m)*np.sum(dZ1, axis = 1, keepdims = True)
###############################################################################STOP


#parameters update - gradient descent
W1 = W1 - dW1*learning_rate
b1 = b1 - db1*learning_rate
W2 = W2 - dW2*learning_rate
b2 = b2 - db2*learning_rate


for i in range(np.shape(Y)[1]):
guess = np.argmax(A2[i, :])
ans = np.argmax(Y[i, :])
print(str(x) + " " + str(i) + ". " +"guess: ", guess, "| ans: ", ans)
if guess == ans:
correct = correct + 1;

accuracy = (correct/np.shape(Y)[0]) * 100

最佳答案

卢卡斯,好问题,刷新基础知识。我对您的代码做了一些修复:

  • m的计算
  • 转置了所有权重和偏差(无法正确解释,但否则无法正常工作)。
  • 更改了准确度(以及未使用的损失)的计算。

请参阅下面更正后的代码。与原始参数相比,它的准确率达到 90%:

def neural_network(num_hid, epochs, learning_rate, X, Y):
#num_hid - number of neurons in the hidden layer
#X - dataX - shape (10000, 784)
#Y - labels - shape (10000, 10)

#inicialization
# W1 = np.random.randn(784, num_hid) * 0.01
# W2 = np.random.randn(num_hid, 10) * 0.01
# b1 = np.zeros((1, num_hid))
# b2 = np.zeros((1, 10))
W1 = np.random.randn(num_hid, 784) * 0.01
W2 = np.random.randn(10, num_hid) * 0.01
b1 = np.zeros((num_hid, 1))
b2 = np.zeros((10, 1))

for x in range(1, epochs+1):
correct = 0 # moved inside cycle
#feedforward
# Z1 = np.dot(X, W1) + b1
Z1 = np.dot(W1, X.T) + b1
A1 = tanh(Z1)
# Z2 = np.dot(A1, W2) + b2
Z2 = np.dot(W2, A1) + b2
A2 = softmax(Z2)

###############################################################################START
m = X.shape[0] #-> 784 # SHOULD BE NUMBER OF SAMPLES IN THE BATCH
# loss = - np.sum((Y * np.log(A2)), axis=0, keepdims=True)
loss = - np.sum((Y.T * np.log(A2)), axis=0, keepdims=True)
cost = np.sum(loss, axis=1) / m

#backpropagation
# dZ2 = A2 - Y
# dW2 = (1/m)*np.dot(A1.T, dZ2)
# db2 = (1/m)*np.sum(dZ2, axis = 1, keepdims = True)
# dZ1 = np.multiply(np.dot(dZ2, W2.T), 1 - np.power(A1, 2))
# dW1 = (1/m)*np.dot(X.T, dZ1)
dZ2 = A2 - Y.T
dW2 = (1/m)*np.dot(dZ2, A1.T)
db2 = (1/m)*np.sum(dZ2, axis = 1, keepdims = True)
dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
dW1 = (1/m)*np.dot(dZ1, X)

db1 = (1/m)*np.sum(dZ1, axis = 1, keepdims = True)
###############################################################################STOP

#parameters update - gradient descent
W1 = W1 - dW1*learning_rate
b1 = b1 - db1*learning_rate
W2 = W2 - dW2*learning_rate
b2 = b2 - db2*learning_rate

guess = np.argmax(A2, axis=0) # axis fixed
ans = np.argmax(Y, axis=1) # axis fixed
# print (guess.shape, ans.shape)
correct += sum (guess==ans)

# #print(str(x) + " " + str(i) + ". " +"guess: ", guess, "| ans: ", ans)
# if guess == ans:
# correct = correct + 1;
accuracy = correct / x_test.shape[0]
print (f"Epoch {x}. accuracy = {accuracy*100:.2f}%")


neural_network (64, 100, 0.3, x_test, y_test)

Epoch 1. accuracy = 14.93%
Epoch 2. accuracy = 34.70%
Epoch 3. accuracy = 47.41%
(...)
Epoch 98. accuracy = 89.29%
Epoch 99. accuracy = 89.33%
Epoch 100. accuracy = 89.37%

关于python - MNIST 数字的神经网络根本不学习 - 反向传播问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59864215/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com