- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试创建一个 for 循环来自动生成 ~50 个比较两组数据的散点图。这是质量控制分析,所以我正在查看分析两次(重复)的地球化学值。所以我有一个包含 53 种元素(元素周期表元素)的列表,标记为 Al1、Ag1、Au1..... 以及另一个包含 53 种元素的列表,标记为 Al2、Ag2...等。
我已经成功地让我的循环工作以生成只需要一个变量的图形,x 轴是固定的,如下所示。
for(i in colNames){
plt <- ggplot(YGS_Dupes, mapping = aes_string(x=Dup_Num, y = i)) +
geom_bar() + theme_calc() + ggtitle(paste(i, "Duplicate Comparison", sep=" -
"))
print(plt)
ggsave(paste0(i,".png"))
Sys.sleep(2)
}
我将 colNames 设置为元素列,该函数遍历不同的元素并为每个元素生成一个条形图,其中它仅将样本 1 或样本 2 显示为 X 轴(因此它会生成两个并排的条形图边)。
我现在需要制作一个散点图,我在其中比较从 Al1 到 Al2 或 Fe1 到 Fe2 的数据,因此我需要 for 循环使用两组平行的变化变量来运行。我为单个图形创建了这样的函数:
ggplot(YGS_Dup_Scatter, mapping = aes(x = Fe_pct1, y =
Fe_pct2))+geom_point()
它看起来像这样:
Fe 与 Fe 散点图
所以我所做的是制作一组类似的 colNames 组,如下所示:
colNames_scatter_dup <- names(YGS_Dup_Scatter)[4:56]
colNames_scatter_dup2 <- names(YGS_Dup_Scatter)[57:109]
其中4-56是元素1的全部集合,57-109是元素2的集合。它们的顺序相同,所以我希望 4/57、5/58...等成对。
如何设置我的 for 循环方程来执行此操作?
谢谢你的帮助
编辑:添加 dput 数据供人们尝试。我有太多的观察和变量,所以我删掉了大部分:
编辑 2:好的,所以我制作了一个嵌套循环,它制作了我想要的东西,但它也制作了太多图表,如下所示:
for (j in colNames_scatter_dup2) {
for(i in colNames_scatter_dup){
plt <- ggplot(YGS_Dup_Scatter, mapping = aes_string(x=j, y = i)) +
geom_point()
print(plt)
ggsave(paste0(i,".png"))
Sys.sleep(2)
}
}
我现在遇到的问题是它做 Al1 vs Al2,然后是 Ag1 vs Al2,......然后是 Al1 vs Ag2......并制作数百张图表。我只想制作实际的 53 个元素对,但我不知道如何将其限制为这些元素对。
谢谢
structure(list(DUP_COMP_ID = structure(c(1L, 12L, 23L, 34L, 45L,
56L, 67L, 78L, 89L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 31L, 32L, 33L, 35L, 36L, 37L, 38L, 39L, 40L,
41L, 42L, 43L, 44L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L,
55L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 68L, 69L,
70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 79L, 80L, 81L, 82L, 83L,
84L, 85L, 86L, 87L, 88L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L,
98L, 99L), .Label = c("DCI_1", "DCI_10", "DCI_11", "DCI_12",
"DCI_13", "DCI_14", "DCI_15", "DCI_16", "DCI_17", "DCI_18", "DCI_19",
"DCI_2", "DCI_20", "DCI_21", "DCI_22", "DCI_23", "DCI_24", "DCI_25",
"DCI_26", "DCI_27", "DCI_28", "DCI_29", "DCI_3", "DCI_30", "DCI_31",
"DCI_32", "DCI_33", "DCI_34", "DCI_35", "DCI_36", "DCI_37", "DCI_38",
"DCI_39", "DCI_4", "DCI_40", "DCI_41", "DCI_42", "DCI_43", "DCI_44",
"DCI_45", "DCI_46", "DCI_47", "DCI_48", "DCI_49", "DCI_5", "DCI_50",
"DCI_51", "DCI_52", "DCI_53", "DCI_54", "DCI_55", "DCI_56", "DCI_57",
"DCI_58", "DCI_59", "DCI_6", "DCI_60", "DCI_61", "DCI_62", "DCI_63",
"DCI_64", "DCI_65", "DCI_66", "DCI_67", "DCI_68", "DCI_69", "DCI_7",
"DCI_70", "DCI_71", "DCI_72", "DCI_73", "DCI_74", "DCI_75", "DCI_76",
"DCI_77", "DCI_78", "DCI_79", "DCI_8", "DCI_80", "DCI_81", "DCI_82",
"DCI_83", "DCI_84", "DCI_85", "DCI_86", "DCI_87", "DCI_88", "DCI_89",
"DCI_9", "DCI_90", "DCI_91", "DCI_92", "DCI_93", "DCI_94", "DCI_95",
"DCI_96", "DCI_97", "DCI_98", "DCI_99"), class = "factor"), Dup_Code = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = "Sample 1", class = "factor"), Dup_Code.1 = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = "Sample 2", class = "factor"), Ag_ppb1 = c(56L,
58L, 52L, 59L, 68L, 318L, 50L, 70L, 398L, 114L, 38L, 52L, 63L,
64L, 65L, 81L, 66L, 62L, 86L, 146L, 67L, 70L, 49L, 69L, 74L,
55L, 55L, 47L, 109L, 41L, 78L, 115L, 65L, 373L, 59L, 47L, 85L,
72L, 86L, 72L, 77L, 554L, 68L, 85L, 105L, 70L, 67L, 127L, 69L,
67L, 38L, 59L, 284L, 94L, 57L, NA, 92L, 88L, 74L, 73L, 50L, NA,
63L, 57L, 111L, 71L, 47L, 69L, 81L, 45L, 52L, 42L, 34L, 176L,
73L, 140L, 87L, 41L, 36L, 204L, 272L, 52L, 37L, 45L, 187L, 180L,
100L, 60L, 39L, 71L, 92L, 29L, 308L, 157L, 78L, 91L, NA, 60L,
217L), As_ppm1 = c(4.3, 4.8, 4.6, 5, 1.9, 14.3, 3, 5.8, 49.7,
9.2, 3.8, 3.1, 5.9, 5.4, 5, 4.3, 5.3, 4.2, 3.8, 35, 5.8, 6.6,
3.3, 11.2, 3.5, 3.8, 3.8, 4.4, 8.8, 4.9, 3.6, 18.3, 3.6, 6.1,
4.2, 4.4, 9, 7.3, 3.7, 3.4, 13.7, 21.9, 3.9, 5.8, 3.6, 4.4, 2.9,
5.2, 4.9, 5.4, 4.4, 4.3, 5.5, 8.3, 3.4, NA, 6.2, 4.2, 3.5, 5.5,
5, NA, 3.4, 4.2, 7.1, 5.1, 3.8, 6.9, 6.7, 3.2, 4.8, 4.3, 2.6,
4.6, 4.8, 9.3, 7.5, 2.8, 4.2, 4.9, 17, 3.1, 3.9, 4.7, 9.7, 883.2,
7.8, 5.1, 2.4, 10.4, 7.2, 2.9, 6.7, 9.3, 3.7, 7.3, NA, 4.8, 21.5
), Au_ppb1 = c(0.7, 4.6, 1.5, 0.6, 11.9, 2.4, 0.8, 0.8, 2.2,
3.5, 0.4, 0.8, 0.9, 1.7, 1.2, 3.5, 1.4, 1.4, 2.2, 2.6, 3, 0.9,
0.6, 1.5, 0.9, 0.7, 1.4, 3.5, 8.7, 0.4, 0.6, 2.4, 1.1, 1.7, 1.5,
1.3, 0.1, 0.1, 4.5, 44.5, 0.8, 6.6, 48.7, 1.5, 0.7, 0.3, 0.8,
1.1, 1.2, 5.5, 1.4, 1.4, 2.7, 1.9, 1, NA, 0.4, 1, 1.6, 0.3, 0.4,
NA, 0.8, 1.8, 1.9, 0.1, 0.5, 1.4, 0.8, 0.2, 0.8, 0.6, 0.3, 1.1,
1, 2.1, 0.8, 0.4, 0.9, 0.9, 1.2, 1.2, 1.2, 1.3, 1.2, 1.6, 1.8,
0.5, 1.4, 1.3, 1.4, 0.1, 0.6, 1.9, 0.8, 1.5, NA, 0.6, 3.4), B_ppm1 = c(10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 21L, NA, 10L, 10L, 10L, 10L, 10L, NA, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, NA, 10L, 10L), Ba_ppm1 = c(141, 124.2, 171.9,
171, 246.8, 359.3, 96, 205.4, 187.4, 195.3, 115.2, 134.9, 162.9,
156.9, 186.7, 148.4, 164.9, 165.5, 329.1, 106.8, 137.3, 150.7,
180.9, 123.4, 150.6, 122.7, 230.4, 176.1, 208.9, 154.5, 147.2,
242.2, 184.2, 465.5, 217.2, 171.3, 286.6, 248, 243.1, 265.9,
273.3, 317.4, 150.7, 272.7, 332.1, 293.1, 185.7, 262.9, 203.4,
333, 185.2, 203.4, 300.8, 227.3, 193.2, NA, 328, 293.2, 225.7,
286.9, 237.6, NA, 193.5, 293.8, 294.5, 252.2, 160.5, 277, 349.2,
184.5, 231.3, 251.4, 150, 372.4, 237.7, 227.9, 271.8, 66.6, 92.8,
53.4, 112.5, 172.6, 188.5, 177, 315.5, 193.8, 300.2, 132.9, 199.4,
221.4, 375.6, 128.7, 82.7, 157.4, 175.5, 297.9, NA, 190.9, 206.4
), Be_ppm1 = c(0.3, 0.5, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.6, 0.3,
0.4, 0.4, 0.3, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.3, 0.9, 0.4, 0.6,
0.3, 0.5, 0.3, 0.3, 0.2, 0.3, 0.3, 0.4, 0.6, 0.3, 0.2, 0.3, 0.3,
0.3, 0.2, 0.6, 0.4, 0.4, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.4,
0.2, 0.3, 0.3, 0.2, 0.3, 0.3, NA, 0.3, 0.05, 0.3, 0.3, 0.2, NA,
0.3, 0.5, 0.3, 0.5, 0.3, 0.3, 0.3, 0.3, 0.2, 0.3, 0.2, 0.4, 0.3,
0.5, 0.4, 0.2, 0.1, 1.8, 1.8, 0.4, 0.2, 0.2, 0.8, 35.9, 0.3,
0.4, 0.2, 0.4, 0.2, 0.4, 0.2, 0.4, 0.3, 0.4, NA, 0.4, 1.2), Bi_ppm1 = c(0.24,
0.29, 0.21, 0.19, 0.13, 0.28, 0.15, 0.16, 0.73, 0.14, 0.12, 0.39,
0.1, 0.12, 0.4, 0.42, 0.13, 0.13, 0.11, 6.67, 0.14, 0.22, 0.15,
0.18, 0.09, 0.06, 0.09, 0.1, 0.18, 0.08, 0.08, 0.14, 0.06, 0.23,
0.1, 0.09, 0.08, 0.14, 0.13, 0.06, 0.08, 0.13, 0.08, 0.15, 0.11,
0.1, 0.07, 0.11, 0.1, 0.06, 0.11, 0.08, 0.11, 0.11, 0.08, NA,
0.12, 0.22, 0.1, 0.13, 0.08, NA, 0.06, 0.18, 0.13, 0.1, 0.16,
0.15, 0.13, 0.07, 0.09, 0.08, 0.06, 0.14, 0.07, 0.21, 0.17, 0.01,
0.05, 2.07, 0.35, 0.13, 0.08, 0.09, 0.23, 0.55, 0.17, 1.1, 0.06,
0.07, 0.14, 0.04, 0.06, 0.15, 0.08, 0.12, NA, 0.09, 0.97), Ca_pct1 = c(0.69,
0.58, 0.46, 0.46, 0.42, 0.41, 0.51, 0.5, 0.6, 0.83, 0.42, 0.34,
0.69, 0.98, 0.51, 0.43, 0.78, 0.44, 0.38, 0.56, 1.07, 0.46, 0.72,
0.77, 1.08, 0.64, 0.46, 0.57, 0.5, 0.5, 0.88, 0.65, 0.67, 0.28,
0.75, 0.59, 0.49, 0.72, 0.31, 0.42, 0.71, 0.14, 0.42, 0.69, 0.29,
0.39, 0.31, 0.94, 0.7, 0.47, 0.71, 0.38, 0.31, 0.5, 0.47, NA,
0.47, 0.37, 0.67, 0.68, 0.32, NA, 0.64, 0.31, 0.83, 0.52, 0.33,
0.71, 0.91, 0.49, 0.58, 0.35, 0.34, 0.5, 0.54, 0.92, 0.4, 3.74,
1.69, 0.21, 0.4, 0.45, 0.66, 0.49, 0.56, 0.88, 0.41, 0.41, 0.31,
0.53, 0.96, 1.13, 0.35, 0.58, 0.33, 0.56, NA, 0.68, 0.32), Cd_ppm1 = c(0.13,
0.22, 0.12, 0.15, 0.09, 0.99, 0.13, 0.19, 0.88, 0.34, 0.1, 0.15,
0.17, 0.16, 0.14, 0.2, 0.14, 0.11, 0.15, 0.2, 0.14, 0.17, 0.1,
0.17, 0.18, 0.13, 0.11, 0.13, 0.2, 0.12, 0.13, 0.27, 0.13, 0.37,
0.21, 0.12, 0.18, 0.08, 0.14, 0.11, 0.15, 0.41, 0.19, 0.3, 0.23,
0.15, 0.1, 0.34, 0.13, 0.13, 0.09, 0.15, 0.25, 0.17, 0.12, NA,
0.17, 0.22, 0.14, 0.21, 0.11, NA, 0.1, 0.16, 0.27, 0.19, 0.13,
0.22, 0.26, 0.05, 0.17, 0.15, 0.1, 0.39, 0.16, 0.47, 0.21, 0.17,
0.14, 0.59, 1.11, 0.12, 0.13, 0.1, 0.63, 0.47, 0.33, 0.2, 0.11,
0.26, 0.28, 0.11, 0.1, 0.55, 0.37, 0.29, NA, 0.18, 0.82), Ag_ppb2 = c(59L,
73L, 69L, 75L, 85L, 319L, 43L, 73L, 405L, 121L, 33L, 45L, 71L,
67L, 67L, 80L, 50L, 45L, 68L, 140L, 56L, 69L, 51L, 71L, 79L,
51L, 36L, 52L, 93L, 31L, 98L, 134L, 67L, 386L, 47L, 46L, 90L,
63L, 86L, 54L, 59L, 478L, 61L, 114L, 108L, 74L, 72L, 147L, 60L,
74L, 40L, 56L, 256L, 112L, 62L, 87L, 71L, 104L, 109L, 55L, 45L,
84L, 69L, 63L, 107L, 70L, 57L, 73L, 100L, 45L, 43L, 36L, 39L,
161L, 108L, 100L, 93L, 32L, 45L, 187L, 267L, 68L, 37L, 57L, 228L,
74L, 69L, 47L, 65L, 101L, 33L, 32L, 139L, 77L, 78L, NA, 59L,
214L, 410L), As_ppm2 = c(3.9, 3.8, 4.4, 5.4, 1.7, 14.4, 3.1,
5.9, 52.3, 9.7, 3.5, 2.7, 6.7, 5.2, 5, 4.3, 4.8, 4, 3.9, 31.9,
5.3, 6.5, 3.6, 10.4, 3.5, 3.9, 3.6, 4.3, 8.9, 5.3, 3.8, 16.7,
3.7, 6.1, 3.7, 4, 9.6, 6.4, 4, 3.1, 13.2, 22.1, 4.3, 6.9, 3.6,
4.9, 3.4, 4.8, 4.1, 4.8, 4.2, 3.8, 5.3, 9.2, 3.3, 12.5, 5.3,
4.4, 4.8, 5.7, 5, 5.5, 3.4, 4.4, 6.5, 4.8, 4, 6.5, 6.2, 3.4,
4.5, 3.8, 2.6, 4.7, 8, 8.5, 7.6, 2.6, 4.7, 5.2, 15.8, 4, 3.1,
5.3, 343.7, 7.4, 5.1, 3, 11, 7.3, 3, 6.8, 21.1, 4.1, 9.1, NA,
4.4, 21, 122.1), Au_ppb2 = c(0.9, 1.6, 0.1, 1.3, 0.7, 1.8, 0.6,
0.8, 1.6, 2.7, 0.4, 0.9, 0.9, 1.8, 1.5, 1.6, 1.5, 0.9, 2, 1.3,
0.3, 3, 0.8, 2.5, 1.5, 0.4, 1.2, 1.4, 1, 1.1, 0.4, 113.3, 0.6,
2.2, 1.9, 0.7, 0.5, 0.1, 1.8, 0.9, 1.4, 4.3, 1.6, 0.8, 0.7, 0.9,
0.6, 2.4, 5.6, 1.2, 0.9, 1.1, 2.1, 1.1, 0.9, 0.8, 0.9, 1, 4,
0.3, 1.5, 0.5, 1.2, 1, 1.5, 0.1, 1.2, 19.8, 32.8, 0.1, 0.7, 0.7,
1, 0.5, 2.3, 1.6, 1.6, 0.6, 0.9, 1.7, 1.9, 1.3, 1.1, 1.1, 0.9,
4.8, 0.5, 0.4, 1.6, 1, 0.1, 0.9, 1.3, 0.8, 2.7, NA, 0.8, 4, 3.6
), B_ppm2 = c(10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 22L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 23L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, NA, 10L, 10L, 10L), Ba_ppm2 = c(137.5,
128, 175, 205.6, 262.7, 356.1, 91.2, 212.8, 207, 217.4, 111,
132.4, 179.4, 139.8, 188.9, 164.4, 136, 158.7, 348.9, 96.6, 141.3,
143.7, 187, 121.2, 166.9, 131, 235.9, 189.5, 201.4, 158.7, 148.3,
227, 190, 415.9, 197.2, 178, 268, 221.1, 251.5, 243.3, 260.4,
310, 165.8, 308.2, 342.8, 317, 185, 241.7, 189.2, 291.4, 199.4,
214.7, 312.2, 273, 197.8, 265, 255, 315.2, 281.7, 326, 236.5,
229.7, 197.8, 308.4, 277.2, 258.7, 185.7, 261.2, 354.7, 177.7,
213.2, 226.7, 159.2, 369.5, 359.1, 224.9, 275.4, 54, 106.7, 53.4,
100.9, 194.7, 188.4, 187.4, 162.9, 237.7, 146.9, 189, 214.9,
368.1, 134.8, 82.4, 130.4, 187.8, 291.2, NA, 171.9, 209.5, 318.5
), Be_ppm2 = c(0.2, 0.3, 0.4, 0.3, 0.3, 0.4, 0.1, 0.3, 0.6, 0.4,
0.4, 0.5, 0.4, 0.3, 0.5, 0.7, 0.3, 0.3, 0.2, 0.4, 0.7, 0.4, 0.4,
0.3, 0.4, 0.2, 0.3, 0.3, 0.5, 0.6, 0.5, 0.4, 0.3, 0.3, 0.3, 0.2,
0.2, 0.2, 0.5, 0.2, 0.3, 0.3, 0.2, 0.4, 0.3, 0.2, 0.2, 0.2, 0.3,
0.2, 0.3, 0.2, 0.3, 0.5, 0.3, 0.4, 0.3, 0.3, 0.2, 0.3, 0.1, 0.5,
0.2, 0.6, 0.3, 0.4, 0.4, 0.2, 0.4, 0.3, 0.3, 0.2, 0.2, 0.3, 0.5,
0.3, 0.3, 0.2, 0.2, 1.6, 1.8, 0.5, 0.2, 0.6, 33.1, 0.1, 0.6,
0.05, 0.2, 0.3, 0.7, 0.2, 1.5, 0.3, 0.3, NA, 0.3, 1.2, 1.4),
Bi_ppm2 = c(0.23, 0.28, 0.23, 0.21, 0.12, 0.26, 0.14, 0.16,
0.69, 0.16, 0.12, 0.34, 0.11, 0.11, 0.41, 0.36, 0.12, 0.11,
0.11, 2.86, 0.14, 0.23, 0.19, 0.18, 0.1, 0.05, 0.08, 0.11,
0.15, 0.08, 0.09, 0.15, 0.06, 0.24, 0.08, 0.09, 0.09, 0.12,
0.14, 0.07, 0.07, 0.12, 0.09, 0.18, 0.1, 0.1, 0.09, 0.09,
0.11, 0.06, 0.1, 0.07, 0.1, 0.12, 0.08, 0.09, 0.1, 0.2, 0.09,
0.1, 0.09, 0.17, 0.06, 0.15, 0.12, 0.1, 0.17, 0.13, 0.12,
0.05, 0.08, 0.08, 0.07, 0.17, 0.12, 0.21, 0.17, 0.01, 0.05,
1.93, 0.33, 0.15, 0.05, 0.08, 0.68, 0.12, 0.3, 0.06, 0.06,
0.14, 0.05, 0.08, 0.4, 0.09, 0.12, NA, 0.07, 0.98, 2.21),
Ca_pct2 = c(0.6, 0.56, 0.48, 0.53, 0.4, 0.41, 0.47, 0.51,
0.58, 0.86, 0.41, 0.33, 0.7, 0.9, 0.51, 0.45, 0.67, 0.44,
0.39, 0.56, 1.05, 0.48, 1.21, 0.83, 1.1, 0.66, 0.45, 0.62,
0.5, 0.47, 1.04, 0.66, 0.64, 0.3, 0.74, 0.58, 0.49, 0.65,
0.31, 0.42, 0.62, 0.13, 0.42, 0.84, 0.29, 0.4, 0.32, 1.01,
0.6, 0.46, 0.71, 0.41, 0.3, 0.58, 0.5, 1.02, 0.4, 0.39, 0.87,
0.79, 0.34, 0.44, 0.67, 0.31, 0.79, 0.47, 0.33, 0.67, 0.86,
0.5, 0.49, 0.29, 0.35, 0.5, 0.87, 0.8, 0.39, 3.36, 1.78,
0.22, 0.36, 0.5, 0.57, 0.53, 0.58, 0.37, 0.43, 0.3, 0.46,
1.03, 1.12, 0.36, 0.48, 0.38, 0.52, NA, 0.52, 0.33, 1.21),
Cd_ppm2 = c(0.13, 0.19, 0.12, 0.15, 0.1, 0.97, 0.1, 0.21,
0.92, 0.35, 0.1, 0.09, 0.16, 0.18, 0.16, 0.17, 0.11, 0.11,
0.2, 0.16, 0.11, 0.16, 0.13, 0.17, 0.2, 0.13, 0.14, 0.15,
0.25, 0.05, 0.18, 0.28, 0.09, 0.3, 0.22, 0.09, 0.18, 0.12,
0.1, 0.1, 0.15, 0.3, 0.17, 0.33, 0.2, 0.15, 0.1, 0.59, 0.16,
0.16, 0.1, 0.13, 0.24, 0.21, 0.11, 0.46, 0.12, 0.24, 0.23,
0.17, 0.11, 0.22, 0.13, 0.18, 0.24, 0.16, 0.17, 0.18, 0.23,
0.09, 0.12, 0.1, 0.1, 0.35, 0.37, 0.43, 0.24, 0.16, 0.17,
0.62, 1, 0.13, 0.12, 0.11, 0.56, 0.23, 0.22, 0.15, 0.23,
0.28, 0.12, 0.1, 0.97, 0.36, 0.3, NA, 0.19, 0.89, 3.59)), class = "data.frame", row.names = c(NA,
-99L))
最佳答案
考虑 Map
(mapply
的包装器),它是在等长列表之间按元素运行并将输出保存到列表中的迭代函数。这样做可以避免出现嵌套 for
循环方法中出现的无关循环。
# EXTRACT NEEDED NAMES
samples1 <- names(YGS_Dupes)[grep("1$", names(YGS_Dupes))][-1] # -1 TO REMOVE Dupe_Code.1
samples2 <- names(YGS_Dupes)[grep("2$", names(YGS_Dupes))]
# SET UP LOOPING FUNCTION
plot_fct <- function(s1, s2) {
s_title <- gsub("1", "", s1)
p <- ggplot(YGS_Dupes, aes_string(x=s1, y=s2)) + geom_point(color="#0072B2") +
ggtitle(paste(s_title, "Duplicate Comparison", sep=" - ")) +
theme(plot.title = element_text(hjust = 0.5), legend.position="top",
axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5))
ggsave(paste0(s_title,".png"))
return(p)
}
# BUILD LIST LOOPING ELEMENTWISE
plot_list2 <- Map(plot_fct, samples1, samples2)
# OUTPUT PLOTS BY NAME
plot_list2$Ag_ppb1
plot_list2$As_ppm1
plot_list2$Au_ppb1
输出(前三个图)
关于R散点图循环使用两个变量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52374540/
我想填充 3D 等高线图 (contour3(X,Y,Z)),就像 2D 等高线填充图 (contourf(X,Y,Z))。但我无法弄清楚如何实现这一目标。 contour3 和 surf 的组合不是
我有一个 c3.js 折线图,表示 2 个值的演变。我需要折线图的工具提示是饼图(工具提示 = 另一个 c3.js 图形)。 这是我成功的: http://jsfiddle.net/owhxgaqm/
我有具有结构的 Pandas 数据框: A B 0 1 1 1 2 1 2 3 4 3 3 7 4 6 8 如何生成 Seaborn Violin 图,每列作为其自己的单独
我正在使用 D3DXSPRITE 方法将我的 map 图 block 绘制到屏幕上,我刚刚添加了一个缩放功能,当您按住向上箭头时会放大,但注意到您现在可以看到图 block 之间的间隙,这是一些屏幕截
今天我们开始学习目前学习到的最难最复杂的数据结构图。 简单回顾一下之前学习的数据结构,数组、单链表、队列等线性表中数据元素是一对一关系,而树结构中数据元素是一对多关系,而图结构中数据元素则是多对
1、系统环境如下图: 2、为该系统添加一块新的虚拟硬盘,添加后需重启虚拟机,否则系统不识别;如下图,/dev/sdc 是新添加的硬盘; 3、fdisk /dev/sdc为新硬盘创建分区:
1、nagios简介 nagios是一款开源的电脑系统和网络监视工具,能有效监控windows、linux和unix的主机状态,交换机路由器等网络设置,打印机等。在系统或服务状态异常时发
越来越多人开始习惯用手机上网,浏览网页、查看邮件···移动化已经成为互联网发展必然趋势,包括facebook在内的很多互联网公司都将移动广告作为下一个淘金地
1.图片处理 1.圆角图片 复制代码 代码如下: /** * 转换成圆角 * &n
Microsoft SQL Server Management Studio是SQL SERVER的客户端工具,相信大家都知道。我不知道大伙使用导入数据的情况怎么样,反正我最近是遇到过。主要是因为没
debian6系统: 首先先安装mysql吧: 打开终端(root)用户登入 apt-get purge mysql-server-5.5 安装完成后: 默认情况下Mysql只允许本地登录
fedora16英文环境下支持中文输入法的方法 fedora16英文环境下支持FCITX的中文输入法: $ im-chooser 就会出现选择界面,选择第二个就行了。
Net预编译命令 C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_compiler.exe -? 显示说明 我们需要选择的命令为&n
有的时候电脑出现一些故障有的时候通过将其修改bios设置的方法来解决故障,那么在bios上设置能不能将电脑恢复出厂设置呢?其实也是可以的。方法也很简单的,只要会进入电脑的bios懂的上面英文的意思就
笔者曾介绍过Deepin 将对龙芯进行全面支持,打造最优美龙芯电脑桌面。现在Deepin团队移植工作取得了突破性的成果,Deepin桌面已经在龙芯3A和龙芯3B电脑上成功运行起来了。 以下为龙芯3
在安装一些软件之后,我们的电脑总是会发生一点小变化,不是桌面上多了几个网址图标,就是IE浏览器的默认主页被篡改成乱七八糟的网址。最可气的是,在IE设置中将默认主页改回来后,下次启动Win7后又变了回
“注册表编辑器怎么打开”虽说不是很难的问题,但是对于对电脑常识不是很擅长的网民来说,当电脑出现问题或需要更改设置时,着实还是件头疼的问题。因为需要打开注册表进行操作解决。那么如何打开注册表编辑器呢?
这篇文章重点介绍10个重要的WordPress安全插件和技巧,用来保护WordPress网站或者博客。 1. WP Security 人工帮助你修复被黑客入侵的网站,只要按照他们网站上的联系电话
其实运用object和javascript调用外部文件,也能实现不同栏目调用不同友情链接,即相当于调用不同栏目友情链接文件, {dede:field.typeid/}来获取当前栏目的ID。
我有一个复值矩阵。 如果我发出命令: plot(myMatrix) 然后它在图形设备上显示一种散点图,X 轴标记为 Re(myMatrix),Y 轴标记为 Im(myMatrix)。这显示了我正在寻找
我是一名优秀的程序员,十分优秀!