gpt4 book ai didi

r - ggplot2:为多列添加 p 值、Rsq 和斜率

转载 作者:行者123 更新时间:2023-12-02 02:48:38 26 4
gpt4 key购买 nike

假设我有这个数据框:

library(ggplot2)
Y <- rnorm(100)
df <- data.frame(A = rnorm(100), B = runif(100), C = rlnorm(100),
Y = Y)
colNames <- names(df)[1:3]
for(i in colNames){
plt <- ggplot(df, aes_string(x=i, y = Y)) +
geom_point(color="#B20000", size=4, alpha=0.5) +
geom_hline(yintercept=0, size=0.06, color="black") +
geom_smooth(method=lm, alpha=0.25, color="black", fill="black")
print(plt)
Sys.sleep(2)
}

我想做一个 lm 模型并为每一列显示调整后的 Rsq、截距、斜率和 p 值。我在下面找到了一个例子

data(iris)
ggplotRegression <- function (fit) {

require(ggplot2)

ggplot(fit$model, aes_string(x = names(fit$model)[2], y = names(fit$model)[1])) +
geom_point() +
stat_smooth(method = "lm", col = "red") +
labs(title = paste("Adj R2 = ",signif(summary(fit)$adj.r.squared, 5),
"Intercept =",signif(fit$coef[[1]],5 ),
" Slope =",signif(fit$coef[[2]], 5),
" P =",signif(summary(fit)$coef[2,4], 5)))
}

fit1 <- lm(Sepal.Length ~ Petal.Width, data = iris)
ggplotRegression(fit1)

但它只适用于一列。(我从 this question 中拿了例子)和 this one over here )

谢谢!

最佳答案

在上面的注释的基础上,您可以将 fit 放入函数中,然后使用 lapply 进行循环。

library(ggplot2)

Y <- rnorm(100)
df <- data.frame(A = rnorm(100), B = runif(100), C = rlnorm(100),
Y = Y)
colNames <- names(df)[1:3]


plot_ls <- lapply(colNames, function(x){


fit <- lm(Y ~ df[[x]], data = df)
ggplot(fit$model, aes_string(x = names(fit$model)[2], y = names(fit$model)[1])) +
geom_point() +
scale_x_continuous(x)+
stat_smooth(method = "lm", col = "red") +
ggtitle(paste("Adj R2 = ",signif(summary(fit)$adj.r.squared, 5),
"Intercept =",signif(fit$coef[[1]],5 ),
" Slope =",signif(fit$coef[[2]], 5),
" P =",signif(summary(fit)$coef[2,4], 5))
)
})

gridExtra::grid.arrange(plot_ls[[1]],plot_ls[[2]],plot_ls[[3]])

enter image description here

关于r - ggplot2:为多列添加 p 值、Rsq 和斜率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53121793/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com