- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
编辑我已经修改了以下描述的部分,以阐明我所说的“功能”和“组”的含义,修正错字,并包括我尝试过的其他代码。
我的 Pandas df
有450万行和23列。下表显示了从df2
生成的df
的几行。它显示了两个组(eeskin和hduquant)和三个功能(失败,exit_status和job_number):
# report by group
group feature #_cats #_jobs rank top_value freq \
10 eeskin failed 1 6 -1 100 6
21 eeskin exit_status 1 6 -1 0 6
0 eeskin job_number 1 6 -1 4.08219e+06 6
21 hduquant exit_status 5 64 -1 37 58
11 hduquant failed 2 64 -1 0 63
1 hduquant job_number 2 64 -1 4.07192e+06 61
exits_status
可以暂时保持-1。
group feature #_cats #_jobs rank top_value freq \
10 eeskin failed 1 6 1 100 6
21 eeskin exit_status 1 6 -1 0 6
0 eeskin job_number 1 6 2 4.08219e+06 6
21 hduquant exit_status 5 64 -1 37 58
11 hduquant failed 2 64 2 0 63
1 hduquant job_number 2 64 1 4.07192e+06 61
failed
排名为1,而
job_number
排名为2。 “hdquant”对于
failed
排名2,对于
job_number
排名1。
job_number
的等级值:
if feat == 'job_number':
grouped = grouped.sort_values("#_jobs", ascending=False)
grouped['rank'] = grouped.index + 1
group feature #_cats #_jobs rank top_value freq \
10 eeskin failed 1 6 -1 100 6
21 eeskin exit_status 1 6 -1 0 6
0 eeskin job_number 1 6 2 4.08219e+06 6
21 hduquant exit_status 5 64 -1 37 58
11 hduquant failed 2 64 -1 0 63
1 hduquant job_number 2 64 1 4.07192e+06 61
feat = ['job_number', 'failed']
for f in feat:
if f == 'job_number':
grouped = grouped.sort_values("#_jobs", ascending=False)
grouped['rank'] = grouped.index + 1
elif f == 'failed': # or f == 'exit_status'
x = len(not grouped[f] == 0)
grouped['x'] = x
grouped = grouped.sort_values("x", ascending=False)
grouped['rank'] = grouped.index + 1
del grouped['x']
group feature #_cats #_jobs rank top_value freq \
10 eeskin failed 1 6 -1 100 6
21 eeskin exit_status 1 6 -1 0 6
0 eeskin job_number 1 6 -1 4.08219e+06 6
21 hduquant exit_status 5 64 -1 37 58
11 hduquant failed 2 64 -1 0 63
1 hduquant job_number 2 64 -1 4.07192e+06 61
df.loc[df.feature == 'job', 'rank'] = df.loc[df.feature == 'job', 'jobs'].rank(ascending=False)
df2.loc[df2['feature' == 'job_number'] & df2['rank']] = (df2.loc[df2['#_jobs']].rank(ascending=False))
import pandas as pd
df = pd.DataFrame([['g1', 'u1', 3902779, '2018-09-27 21:38:06', '2018-10-01 07:24:38', '2018-10-01 08:00:42', 0, 0, 'single', 1, 55696, 609865728.0, 4.0, 6.0, 0, 0, 4.0, 0, 'single', 1, 0, pd.Timedelta('3 days 09:46:32'), pd.Timedelta('00:36:04')]],
columns=['group', 'owner', 'job_number', 'submission_time', 'start_time', 'end_time', 'failed', 'exit_status', 'granted_pe', 'slots', 'task_number', 'maxvmem', 'h_data', 'h_rt', 'highp', 'exclusive', 'h_vmem', 'gpu', 'pe', 'slot', 'campus', 'wait_time', 'wtime'])
df = (df.astype(dtype={'group':'str', 'owner':'str', 'job_number':'int', 'submission_time':'datetime64[ns]', 'start_time':'datetime64[ns]', 'end_time':'datetime64[ns]', 'failed':'int', 'exit_status':'int', 'granted_pe':'str', 'slots':'int', 'task_number':'int', 'maxvmem':'float', 'h_data':'float', 'h_rt':'float', 'highp':'int', 'exclusive':'int', 'h_vmem':'float', 'gpu':'int', 'pe':'str', 'slot':'int', 'campus':'int', 'wait_time':'timedelta64[ns]', 'wtime':'timedelta64[ns]'}))
df
group owner job_number submission_time start_time end_time failed exit_status granted_pe slots task_number maxvmem h_data h_rt highp exclusive h_vmem gpu pe slot campus wait_time wtime
0 g1 u1 3902779 2018-09-27 21:38:06 2018-10-01 07:24:38 2018-10-01 08:00:42 0 0 single 1 55696 609865728.0 4.0 6.0 0 0 4.0 0 single 1 0 3 days 09:46:32 00:36:04
4080243 g50 u92 4071923 2018-10-25 02:08:14 2018-10-27 01:41:58 2018-10-27 02:08:50 0 0 shared 1 119 7.654482e+08 2.5 1.5 0 1 16.0 0 shared 1 0 1 days 23:33:44 00:26:52
4080244 g50 u92 4071922 2018-10-25 02:08:11 2018-10-27 01:46:53 2018-10-27 02:08:53 0 0 shared 1 2208 1.074463e+09 2.5 1.5 0 10 24.0 0 shared 1 0 1 days 23:38:42 00:22:00
最佳答案
您可以使用pandas .loc
来完成此操作
初始化数据帧:
df = pd.DataFrame({'group':['e','e','e','h','h','h'],
'feature':['fail', 'exit', 'job', 'exit', 'fail', 'job'],
'cats':[1, 1, 1, 5, 2, 2],
'jobs':[1, 1, 1, 64, 64, 64],
'rank':[-1, -1, -1, -1, -1, -1],
'topvalue':[100, 0, 4, 37, 0, 3.9],
'freq':[1, 1, 1, 58, 63, 61]
})
.loc
隔离排名位置,然后在分配的右侧,我们使用
.loc
隔离jobs列并使用
.rank()
函数
df.loc[df.feature == 'job', 'rank'] = df.loc[df.feature == 'job', 'jobs'].rank(ascending=False)
top_value == 0
排名保持为-1
df.loc[(df.feature == 'fail') & (df.topvalue != 0), 'rank'] = (
df.loc[(df.feature == 'fail') & (df.topvalue != 0), 'freq']).rank(ascending=True)
df.loc[(df.feature == 'fail') & (df.topvalue != 0), 'rank'] = (
df.loc[(df.feature == 'fail') & (df.topvalue != 0), 'freq']).rank(ascending=True)
关于python - pandas python根据一个或多个其他列的子集更新列A的子集,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55034626/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!