- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我尝试在具有 8 个分区的 RDD 上使用 pyspark 来使用 forEachPartition() 方法。我的自定义函数尝试为给定的字符串输入生成字符串输出。这是代码
from google.cloud import language
from google.cloud.language import enums
from google.cloud.language import types
import pandas as pd
import datetime
def compute_sentiment_score(text):
client = language.LanguageServiceClient()
document = types.Document(content=text,type=enums.Document.Type.PLAIN_TEXT, language='en')
sentiment = client.analyze_sentiment(document=document).document_sentiment
return str(sentiment.score)
def compute_sentiment_magnitude(text):
client = language.LanguageServiceClient()
document = types.Document(content=text,type=enums.Document.Type.PLAIN_TEXT, language='en')
sentiment = client.analyze_sentiment(document=document).document_sentiment
return str(sentiment.magnitude)
import os
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="/path-to-file.json"
imdb_reviews = pd.read_csv('imdb_reviews.csv', header=None, names=['input1', 'input2'], encoding= "ISO-8859-1")
imdb_reviews.head()
input1 input2
0 first think another Disney movie, might good, ... 1
1 Put aside Dr. House repeat missed, Desperate H... 0
2 big fan Stephen King's work, film made even gr... 1
3 watched horrid thing TV. Needless say one movi... 0
4 truly enjoyed film. acting terrific plot. Jeff... 1
spark_imdb_reviews = spark.createDataFrame(imdb_reviews) # create spark dataframe
spark_imdb_reviews.printSchema()
root
|-- input1: string (nullable = true)
|-- input2: long (nullable = true)
这是我的自定义函数 -
def compute_sentiment_score(text):
client = language.LanguageServiceClient()
document = types.Document(content=text,type=enums.Document.Type.PLAIN_TEXT, language='en')
sentiment = client.analyze_sentiment(document=document).document_sentiment
return str(sentiment.score)
def compute_sentiment_magnitude(text):
client = language.LanguageServiceClient()
document = types.Document(content=text,type=enums.Document.Type.PLAIN_TEXT, language='en')
sentiment = client.analyze_sentiment(document=document).document_sentiment
return str(sentiment.magnitude)
这是我尝试使用 forEachPartition() 方法的方法 -
create_rdd = spark_imdb_reviews.select("input1").rdd # create RDD
print(create_rdd.getNumPartitions()) # print the partitions
print(create_rdd.take(1)) # display data
new_rdd = create_rdd.foreachPartition(compute_sentiment_score) # compute score
这给出了这个输出和一个错误 -
8
[Row(input1="first think another Disney movie, might good, it's kids movie. watch it, can't help enjoy it. ages love movie. first saw movie 10 8 years later still love it! Danny Glover superb could play part better. Christopher Lloyd hilarious perfect part. Tony Danza believable Mel Clark. can't help, enjoy movie! give 10/10!")]
File "<ipython-input-106-e3fd65ce75cc>", line 3, in compute_sentiment_score
TypeError: <itertools.chain object at 0x11ab7f198> has type itertools.chain, but expected one of: bytes, unicode
最佳答案
有两个类似的函数:
这两个函数都需要另一个函数作为参数(此处为compute_sentiment_score
)。该函数获取以迭代器形式传递的分区的内容。问题中的 text
参数实际上是一个迭代器,可以在 compute_sentiment_score
内部使用。
foreachPartition
和 mapPartition
之间的区别在于,foreachPartition
是 Spark 操作,而 mapPartition
是转换。这意味着 foreachPartition
调用的代码会立即执行,并且 RDD 保持不变,而 mapPartition
可用于创建新的 RDD。为了存储计算出的情绪分数,应使用 mapPartitions
。
def compute_sentiment_score(itr_text):
#setup the things that are expensive and should be prepared only once per partition
client = language.LanguageServiceClient()
#run the loop for each row of the partition
for text in itr_text:
document = types.Document(content=text.value,type=enums.Document.Type.PLAIN_TEXT, language='en')
sentiment = client.analyze_sentiment(document=document).document_sentiment
yield (text.value, sentiment.score)
df_with_score = df.rdd.mapPartitions(compute_sentiment_score)
df_with_score.foreach(print)
在此示例中,每个分区都会调用 client = language.LanguageServiceClient()
一次。可能必须减少分区数量,例如 coalesce .
关于pyspark - 如何在 pyspark 数据帧上使用 forEachPartition?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63806467/
我在数据框中有一列月份数字,想将其更改为月份名称,所以我使用了这个: df['monthName'] = df['monthNumber'].apply(lambda x: calendar.mont
Pyspark 中是否有一个 input() 函数,我可以通过它获取控制台输入。如果是,请详细说明一下。 如何在 PySpark 中编写以下代码: directory_change = input("
我们正在 pyspark 中构建数据摄取框架,并想知道处理数据类型异常的最佳方法是什么。基本上,我们希望有一个拒绝表来捕获所有未与架构确认的数据。 stringDf = sparkSession.cr
我正在开发基于一组 ORC 文件的 spark 数据框的 sql 查询。程序是这样的: from pyspark.sql import SparkSession spark_session = Spa
我有一个 Pyspark 数据框( 原始数据框 )具有以下数据(所有列都有 字符串 数据类型): id Value 1 103 2
我有一台配置了Redis和Maven的服务器 然后我执行以下sparkSession spark = pyspark .sql .SparkSession .builder .master('loca
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有: +---+-------+-------+ | id| var1| var2| +---+-------+-------+ | a|[1,2,3]|[1,2,3]| | b|[2,
从一些简短的测试来看,pyspark 数据帧的列删除功能似乎不区分大小写,例如。 from pyspark.sql import SparkSession from pyspark.sql.funct
我有一个带有多个数字列的 pyspark DF,我想为每一列根据每个变量计算该行的十分位数或其他分位数等级。 这对 Pandas 来说很简单,因为我们可以使用 qcut 函数为每个变量创建一个新列,如
我有以下使用 pyspark.ml 包进行线性回归的代码。但是,当模型适合时,我在最后一行收到此错误消息: IllegalArgumentException: u'requirement failed
我有一个由 | 分隔的平面文件(管道),没有引号字符。示例数据如下所示: SOME_NUMBER|SOME_MULTILINE_STRING|SOME_STRING 23|multiline text
给定如下模式: root |-- first_name: string |-- last_name: string |-- degrees: array | |-- element: struc
我有一个 pyspark 数据框如下(这只是一个简化的例子,我的实际数据框有数百列): col1,col2,......,col_with_fix_header 1,2,.......,3 4,5,.
我有一个数据框 +------+--------------------+-----------------+---- | id| titulo |tipo | formac
我从 Spark 数组“df_spark”开始: from pyspark.sql import SparkSession import pandas as pd import numpy as np
如何根据行号/行索引值删除 Pyspark 中的行值? 我是 Pyspark(和编码)的新手——我尝试编码一些东西,但它不起作用。 最佳答案 您不能删除特定的列,但您可以使用 filter 或其别名
我有一个循环生成多个因子表的输出并将列名存储在列表中: | id | f_1a | f_2a | |:---|:----:|:-----| |1 |1.2 |0.95 | |2 |0.7
我正在尝试将 hql 脚本转换为 pyspark。我正在努力如何在 groupby 子句之后的聚合中实现 case when 语句的总和。例如。 dataframe1 = dataframe0.gro
我想添加新的 2 列值服务 arr 第一个和第二个值 但我收到错误: Field name should be String Literal, but it's 0; production_targe
我是一名优秀的程序员,十分优秀!