- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个包含 n
行和 23
列(不包括索引)的 DataFrame。
首先,我将它们分成 X
和 Y
:
Y = df.pop("Target").values
X = df.values # now X has 22 columns
然后我使用train_test_split
来分割它们:
X_tr, X_val, y_tr, y_val = train_test_split(X, Y)
我将它们转换为数据集
:
dataset = tf.data.Dataset.from_tensor_slices((X_tr, y_tr))
dataset = dataset.batch(32)
valid_ds = tf.data.Dataset.from_tensor_slices((X_val, y_val))
问题是,当我创建模型时,我把input_shape
放错了,如下所示:
def create_model():
tfkl = tf.keras.layers
inp = tf.keras.Input(shape=(None, 22))
x = tfkl.Dense(128, activation="linear")(inp)
x = tfkl.Dense(64, activation="linear")(x)
x = tfkl.Dense(1, activation="linear")(x)
model = tf.keras.models.Model(inp, x)
model.compile(loss="mae", optimizer="adam", metrics=["mae"])
return model
当我运行 fit
时,在纪元结束时它会抛出错误:
ValueError: Input 0 of layer dense is incompatible with the layer: expected axis
-1 of input shape to have value 22 but received input with shape [22, 1]
我将其更改为 (None, None, 22)
和许多其他内容,但它不起作用。如有任何帮助,我们将不胜感激。
最佳答案
我能够复制您的问题。 X
有 1000
条记录和 22
特征,y
有 1
特征和 >1000
条记录。请引用下面的示例代码
import tensorflow as tf
import numpy as np
from sklearn.model_selection import train_test_split
X = np.random.random((1000,22))
y = np.random.random((1000,1))
X_train,X_test, y_train,y_test = train_test_split(X,y)
dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train))
train_data = dataset.shuffle(len(X_train)).batch(32)
train_data = train_data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
valid_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test))
def create_model():
tfkl = tf.keras.layers
inp = tf.keras.Input(shape=(None,22))
x = tfkl.Dense(128, activation="linear")(inp)
x = tfkl.Dense(64, activation="linear")(x)
x = tfkl.Dense(1, activation="linear")(x)
model = tf.keras.models.Model(inp, x)
model.compile(loss="mae", optimizer="adam", metrics=["mae"])
return model
model=create_model()
model.summary()
model.fit(train_data, epochs=3, validation_data=valid_ds)
输出:
Model: "functional_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, None, 22)] 0
_________________________________________________________________
dense (Dense) (None, None, 128) 2944
_________________________________________________________________
dense_1 (Dense) (None, None, 64) 8256
_________________________________________________________________
dense_2 (Dense) (None, None, 1) 65
=================================================================
Total params: 11,265
Trainable params: 11,265
Non-trainable params: 0
_________________________________________________________________
Epoch 1/3
WARNING:tensorflow:Model was constructed with shape (None, None, 22) for input Tensor("input_1:0", shape=(None, None, 22), dtype=float32), but it was called on an input with incompatible shape (None, 22).
WARNING:tensorflow:Model was constructed with shape (None, None, 22) for input Tensor("input_1:0", shape=(None, None, 22), dtype=float32), but it was called on an input with incompatible shape (None, 22).
1/24 [>.............................] - ETA: 0s - loss: 0.3535 - mae: 0.3535WARNING:tensorflow:Model was constructed with shape (None, None, 22) for input Tensor("input_1:0", shape=(None, None, 22), dtype=float32), but it was called on an input with incompatible shape (22, 1).
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-1-9499c98e2515> in <module>()
28 model.summary()
29
---> 30 model.fit(train_data, epochs=3, validation_data=valid_ds)
12 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
971 except Exception as e: # pylint:disable=broad-except
972 if hasattr(e, "ag_error_metadata"):
--> 973 raise e.ag_error_metadata.to_exception(e)
974 else:
975 raise
ValueError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:1224 test_function *
return step_function(self, iterator)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:1215 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:1208 run_step **
outputs = model.test_step(data)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:1174 test_step
y_pred = self(x, training=False)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__
outputs = call_fn(inputs, *args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:386 call
inputs, training=training, mask=mask)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:508 _run_internal_graph
outputs = node.layer(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:976 __call__
self.name)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py:216 assert_input_compatibility
' but received input with shape ' + str(shape))
ValueError: Input 0 of layer dense is incompatible with the layer: expected axis -1 of input shape to have value 22 but received input with shape [22, 1]
固定代码:
我已将输入形状从 (None, 22)
更改为 (22,)
和 验证数据
批量 32
为 valid_data = valid_ds.batch(32)
请引用如下所示的工作代码
import tensorflow as tf
import numpy as np
from sklearn.model_selection import train_test_split
X = np.random.random((1000,22))
y = np.random.random((1000,1))
X_train,X_test, y_train,y_test = train_test_split(X,y)
dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train))
train_data = dataset.shuffle(len(X_train)).batch(32)
train_data = train_data.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
valid_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test))
valid_data = valid_ds.batch(32)
def create_model():
tfkl = tf.keras.layers
inp = tf.keras.Input(shape=(22,))
x = tfkl.Dense(128, activation="linear")(inp)
x = tfkl.Dense(64, activation="linear")(x)
x = tfkl.Dense(1, activation="linear")(x)
model = tf.keras.models.Model(inp, x)
model.compile(loss="mae", optimizer="adam", metrics=["mae"])
return model
model=create_model()
model.summary()
model.fit(train_data, epochs=3, validation_data=valid_data)
输出:
Model: "functional_3"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 22)] 0
_________________________________________________________________
dense_3 (Dense) (None, 128) 2944
_________________________________________________________________
dense_4 (Dense) (None, 64) 8256
_________________________________________________________________
dense_5 (Dense) (None, 1) 65
=================================================================
Total params: 11,265
Trainable params: 11,265
Non-trainable params: 0
_________________________________________________________________
Epoch 1/3
24/24 [==============================] - 0s 4ms/step - loss: 0.2807 - mae: 0.2807 - val_loss: 0.2773 - val_mae: 0.2773
Epoch 2/3
24/24 [==============================] - 0s 2ms/step - loss: 0.2630 - mae: 0.2630 - val_loss: 0.2600 - val_mae: 0.2600
Epoch 3/3
24/24 [==============================] - 0s 2ms/step - loss: 0.2575 - mae: 0.2575 - val_loss: 0.2616 - val_mae: 0.2616
<tensorflow.python.keras.callbacks.History at 0x7ff6fb1ad358>
关于python - Pandas/Keras : use data from DataFrame to train Keras model, 输入形状错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64279017/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!