- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个名为 outLinks
的数据集,它有两列,一个字符串列和一个数组列。如下所示:
+-------+---------------------+
| url|collect_set(outlinks)|
+-------+---------------------+
| link91| [link620, link761]|
|link297| [link999, link942...|
|link246| [link623, link605...|
...
我正在尝试向该表添加更多行,其中每个新行都包含一个字符串和一个空列表。 diff
是一个具有一个字符串列的数据集。
outLinks = outLinks.union(
diff.map(r ->
new Tuple2<>(r.getString(0), DataTypes.createArrayType(DataTypes.StringType)),
Encoders.tuple(Encoders.STRING(), Encoders.bean(ArrayType.class))).toDF());
我尝试以我能想象到的各种方式定义一个空数组/列表。当我像上面那样做时(我使用 ArrayType 类),我得到以下异常:
Exception in thread "main" java.util.NoSuchElementException: head of empty list
at scala.collection.immutable.Nil$.head(List.scala:420)
at scala.collection.immutable.Nil$.head(List.scala:417)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$$anonfun$5.apply(ExpressionEncoder.scala:121)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$$anonfun$5.apply(ExpressionEncoder.scala:120)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.immutable.List.map(List.scala:285)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$.tuple(ExpressionEncoder.scala:120)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$.tuple(ExpressionEncoder.scala:186)
at org.apache.spark.sql.Encoders$.tuple(Encoders.scala:228)
at org.apache.spark.sql.Encoders.tuple(Encoders.scala)
at edu.upenn.cis455.pagerank.PageRankTask.run(PageRankTask.java:96)
at edu.upenn.cis455.pagerank.PageRankTask.main(PageRankTask.java:30)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
当我使用常规 Java 集合时:
outLinks = outLinks.union(
diff.map(r ->
new Tuple2<>(r.getString(0), Collections.emptyList),
Encoders.tuple(Encoders.STRING(), Encoders.javaSerialization(List.class))).toDF());
我收到以下异常:
Exception in thread "main" org.apache.spark.sql.AnalysisException: Union can only be performed on tables with the compatible column types. binary <> array<string> at the second column of the second table;;
'Union
:- Aggregate [url#18], [url#18, collect_set(outlinks#1, 0, 0) AS collect_set(outlinks)#99]
: +- Deduplicate [url#18, outlinks#1], false
: +- TypedFilter edu.upenn.cis455.pagerank.PageRankTask$$Lambda$15/603456365@713e49c3, interface org.apache.spark.sql.Row, [StructField(url,StringType,true), StructField(outlinks,StringType,true)], createexternalrow(url#18.toString, outlinks#1.toString, StructField(url,StringType,true), StructField(outlinks,StringType,true))
: +- Project [url#18, outlinks#1]
: +- Join Inner, (id#15 = storagepage_id#0)
: :- Relation[id#15,body#16,lastaccessed#17L,url#18] JDBCRelation(pages) [numPartitions=1]
: +- Relation[storagepage_id#0,outlinks#1] JDBCRelation(storagepage_outlinks) [numPartitions=1]
+- SerializeFromObject [staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, input[0, scala.Tuple2, true]._1, true) AS value#1771, encodeusingserializer(input[0, scala.Tuple2, true]._2, false) AS _2#1772]
+- MapElements edu.upenn.cis455.pagerank.PageRankTask$$Lambda$17/2054286321@4bf89d3d, interface org.apache.spark.sql.Row, [StructField(url,StringType,true)], obj#1770: scala.Tuple2
+- DeserializeToObject createexternalrow(url#18.toString, StructField(url,StringType,true)), obj#1769: org.apache.spark.sql.Row
+- Except
:- Project [url#18]
: +- Relation[id#15,body#16,lastaccessed#17L,url#18] JDBCRelation(pages) [numPartitions=1]
+- Project [url#152]
+- Aggregate [url#152], [url#152, collect_set(outlinks#1, 0, 0) AS collect_set(outlinks)#99]
+- Deduplicate [url#152, outlinks#1], false
+- TypedFilter edu.upenn.cis455.pagerank.PageRankTask$$Lambda$15/603456365@713e49c3, interface org.apache.spark.sql.Row, [StructField(url,StringType,true), StructField(outlinks,StringType,true)], createexternalrow(url#152.toString, outlinks#1.toString, StructField(url,StringType,true), StructField(outlinks,StringType,true))
+- Project [url#152, outlinks#1]
+- Join Inner, (id#149 = storagepage_id#0)
:- Relation[id#149,body#150,lastaccessed#151L,url#152] JDBCRelation(pages) [numPartitions=1]
+- Relation[storagepage_id#0,outlinks#1] JDBCRelation(storagepage_outlinks) [numPartitions=1]
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.failAnalysis(CheckAnalysis.scala:39)
at org.apache.spark.sql.catalyst.analysis.Analyzer.failAnalysis(Analyzer.scala:91)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$13$$anonfun$apply$14.apply(CheckAnalysis.scala:329)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$13$$anonfun$apply$14.apply(CheckAnalysis.scala:326)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$13.apply(CheckAnalysis.scala:326)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$13.apply(CheckAnalysis.scala:315)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:315)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:78)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:127)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:78)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:91)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:52)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:66)
at org.apache.spark.sql.Dataset.withSetOperator(Dataset.scala:2884)
at org.apache.spark.sql.Dataset.union(Dataset.scala:1656)
at edu.upenn.cis455.pagerank.PageRankTask.run(PageRankTask.java:95)
at edu.upenn.cis455.pagerank.PageRankTask.main(PageRankTask.java:29)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:755)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
最佳答案
您可以对字符串数组使用spark.implicits().newStringArrayEncoder()
。这是示例。
public class SparkSample {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("SparkSample")
.master("local[*]")
.getOrCreate();
List<Tuple2<String,String[]>> inputList = new ArrayList<Tuple2<String,String[]>>();
inputList.add(new Tuple2<String,String[]>("link91",new String[]{"link620","link761"}));
inputList.add(new Tuple2<String,String[]>("link297",new String[]{"link999","link942"}));
Dataset<Row> dataset = spark.createDataset(inputList, Encoders.tuple(Encoders.STRING(), spark.implicits().newStringArrayEncoder())).toDF();
dataset.show(false);
}
}
关于java - 如何使用 Spark 数据集 API (Java) 创建数组列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47723307/
我正在尝试创建一个包含 int[][] 项的数组 即 int version0Indexes[][4] = { {1,2,3,4}, {5,6,7,8} }; int version1Indexes[
我有一个整数数组: private int array[]; 如果我还有一个名为 add 的方法,那么以下有什么区别: public void add(int value) { array[va
当您尝试在 JavaScript 中将一个数组添加到另一个数组时,它会将其转换为一个字符串。通常,当以另一种语言执行此操作时,列表会合并。 JavaScript [1, 2] + [3, 4] = "
根据我正在阅读的教程,如果您想创建一个包含 5 列和 3 行的表格来表示这样的数据... 45 4 34 99 56 3 23 99 43 2 1 1 0 43 67 ...它说你可以使用下
我通常使用 python 编写脚本/程序,但最近开始使用 JavaScript 进行编程,并且在使用数组时遇到了一些问题。 在 python 中,当我创建一个数组并使用 for x in y 时,我得
我有一个这样的数组: temp = [ 'data1', ['data1_a','data1_b'], ['data2_a','data2_b','data2_c'] ]; // 我想使用 toStr
rent_property (table name) id fullName propertyName 1 A House Name1 2 B
这个问题在这里已经有了答案: 关闭13年前。 Possible Duplicate: In C arrays why is this true? a[5] == 5[a] array[index] 和
使用 Excel 2013。经过多年的寻找和适应,我的第一篇文章。 我正在尝试将当前 App 用户(即“John Smith”)与他的电子邮件地址“jsmith@work.com”进行匹配。 使用两个
当仅在一个边距上操作时,apply 似乎不会重新组装 3D 数组。考虑: arr 1),但对我来说仍然很奇怪,如果一个函数返回一个具有尺寸的对象,那么它们基本上会被忽略。 最佳答案 这是一个不太理
我有一个包含 GPS 坐标的 MySQL 数据库。这是我检索坐标的部分 PHP 代码; $sql = "SELECT lat, lon FROM gps_data"; $stmt=$db->query
我需要找到一种方法来执行这个操作,我有一个形状数组 [批量大小, 150, 1] 代表 batch_size 整数序列,每个序列有 150 个元素长,但在每个序列中都有很多添加的零,以使所有序列具有相
我必须通过 url 中的 json 获取文本。 层次结构如下: 对象>数组>对象>数组>对象。 我想用这段代码获取文本。但是我收到错误 :org.json.JSONException: No valu
enter code here- (void)viewDidLoad { NSMutableArray *imageViewArray= [[NSMutableArray alloc] init];
知道如何对二维字符串数组执行修剪操作,例如使用 Java 流 API 进行 3x3 并将其收集回相同维度的 3x3 数组? 重点是避免使用显式的 for 循环。 当前的解决方案只是简单地执行一个 fo
已关闭。此问题需要 debugging details 。目前不接受答案。 编辑问题以包含 desired behavior, a specific problem or error, and the
我有来自 ASP.NET Web 服务的以下 XML 输出: 1710 1711 1712 1713
如果我有一个对象todo作为您状态的一部分,并且该对象包含数组列表,则列表内部有对象,在这些对象内部还有另一个数组listItems。如何更新数组 listItems 中 id 为“poi098”的对
我想将最大长度为 8 的 bool 数组打包成一个字节,通过网络发送它,然后将其解压回 bool 数组。已经在这里尝试了一些解决方案,但没有用。我正在使用单声道。 我制作了 BitArray,然后尝试
我们的数据库中有这个字段指示一周中的每一天的真/假标志,如下所示:'1111110' 我需要将此值转换为 boolean 数组。 为此,我编写了以下代码: char[] freqs = weekday
我是一名优秀的程序员,十分优秀!