gpt4 book ai didi

r - 基于时间应用滚动函数(日内)

转载 作者:行者123 更新时间:2023-12-02 02:22:59 25 4
gpt4 key购买 nike

我正在尝试测试日内交易向临时 VWAP 的回归。我已经编译了一个(希望如此)可重现的例子来展示我所做的。目前我使用 rollapply,但它根据观察在滚动窗口上应用 VWAP 计算。理想情况下,我想使用滚动时间窗口,比如 10 分钟。

我的例子(基于报价数据):

library(quantmod)
library(xts)

#Create xts object from tick data frame

my.xts <- xts(my.frame[,-1], order.by=my.frame[,1])
my.xts <- my.xts["T10:00/T10:30"]


> my.xts
PRICE QUANTITY
2011-08-31 10:00:14 28724 538
2011-08-31 10:00:22 28724 462
2011-08-31 10:00:22 28724 500
2011-08-31 10:00:47 28701 500
2011-08-31 10:01:10 28725 500
2011-08-31 10:01:18 28728 1000
2011-08-31 10:01:30 28702 500
2011-08-31 10:01:30 28701 500
2011-08-31 10:01:45 28701 2590
2011-08-31 10:01:45 28701 1275
2011-08-31 10:01:46 28701 635
2011-08-31 10:01:53 28697 821
2011-08-31 10:02:02 28700 3379
2011-08-31 10:02:02 28700 1621
2011-08-31 10:03:26 28709 1000
2011-08-31 10:03:38 28709 1000
2011-08-31 10:03:38 28709 997
2011-08-31 10:04:37 28699 500
2011-08-31 10:04:37 28700 2500
2011-08-31 10:04:50 28676 500
2011-08-31 10:05:01 28676 519
2011-08-31 10:05:01 28676 500
2011-08-31 10:05:03 28700 2500
2011-08-31 10:05:03 28700 2000
2011-08-31 10:05:42 28681 197
2011-08-31 10:06:22 28699 2535
2011-08-31 10:06:22 28700 1000
2011-08-31 10:06:22 28700 2500
2011-08-31 10:06:22 28700 2060
2011-08-31 10:06:31 28700 2500
2011-08-31 10:06:32 28700 2500
2011-08-31 10:06:33 28700 2500
2011-08-31 10:06:42 28700 1000
2011-08-31 10:06:42 28700 500
2011-08-31 10:06:43 28700 500
2011-08-31 10:06:58 28700 1000
2011-08-31 10:07:02 28700 1000
2011-08-31 10:07:04 28700 1000
2011-08-31 10:07:04 28700 1000
2011-08-31 10:07:05 28700 1000
2011-08-31 10:07:05 28700 90
2011-08-31 10:07:05 28700 910
2011-08-31 10:07:06 28700 90
2011-08-31 10:07:29 28700 8
2011-08-31 10:07:40 28700 3
2011-08-31 10:07:44 28681 590
2011-08-31 10:07:46 28680 1000
2011-08-31 10:07:47 28676 1167
2011-08-31 10:07:56 28699 350
2011-08-31 10:08:01 28675 1000
2011-08-31 10:08:14 28694 240
2011-08-31 10:08:14 28694 518
2011-08-31 10:08:15 28675 861
2011-08-31 10:08:15 28663 657
2011-08-31 10:09:20 28689 1000
2011-08-31 10:09:59 28696 500
2011-08-31 10:10:10 28694 100
2011-08-31 10:10:51 28698 1000
2011-08-31 10:10:51 28698 1000
2011-08-31 10:11:02 28700 374
2011-08-31 10:11:15 28701 500
2011-08-31 10:11:52 28724 500
2011-08-31 10:11:52 28725 900
2011-08-31 10:11:52 28728 1000
2011-08-31 10:11:52 28740 2500
2011-08-31 10:11:52 28740 300
2011-08-31 10:11:52 28749 1800
2011-08-31 10:11:52 28750 250
2011-08-31 10:11:52 28750 200
2011-08-31 10:11:52 28750 6497
2011-08-31 10:11:52 28750 2103
2011-08-31 10:12:02 28750 8950
2011-08-31 10:12:07 28750 4500
2011-08-31 10:12:50 28750 4450
2011-08-31 10:12:50 28750 550
2011-08-31 10:12:56 28750 478
2011-08-31 10:12:56 28750 522
2011-08-31 10:12:56 28750 492
2011-08-31 10:13:02 28750 61
2011-08-31 10:13:16 28750 4439
2011-08-31 10:13:44 28750 1000
2011-08-31 10:13:47 28750 1000
2011-08-31 10:13:48 28750 1000
2011-08-31 10:13:49 28750 1000
2011-08-31 10:13:49 28750 439
2011-08-31 10:14:25 28750 2061
2011-08-31 10:14:25 28750 1000
2011-08-31 10:14:26 28751 374
2011-08-31 10:14:46 28750 500
2011-08-31 10:15:31 28750 1000
2011-08-31 10:15:49 28775 1
2011-08-31 10:15:52 28775 454
2011-08-31 10:16:47 28752 1000
2011-08-31 10:17:00 28750 1069
2011-08-31 10:17:30 28750 500
2011-08-31 10:17:38 28744 821
2011-08-31 10:17:42 28744 179
2011-08-31 10:17:42 28776 1000
2011-08-31 10:17:44 28779 590
2011-08-31 10:17:46 28780 700
2011-08-31 10:17:46 28780 3000
2011-08-31 10:18:06 28754 590
2011-08-31 10:18:06 28753 700
2011-08-31 10:18:06 28751 500
2011-08-31 10:18:06 28751 10
2011-08-31 10:18:06 28751 990
2011-08-31 10:18:39 28750 1000
2011-08-31 10:18:39 28750 2000
2011-08-31 10:19:11 28748 1000
2011-08-31 10:19:13 28749 1077
2011-08-31 10:19:22 28750 500
2011-08-31 10:19:45 28768 600
2011-08-31 10:19:45 28768 2244
2011-08-31 10:19:58 28750 500
2011-08-31 10:19:58 28750 500
2011-08-31 10:19:58 28750 97
2011-08-31 10:19:58 28750 403
2011-08-31 10:19:58 28750 197
2011-08-31 10:20:06 28750 10
2011-08-31 10:20:18 28750 293
2011-08-31 10:20:18 28750 500
2011-08-31 10:20:19 28750 500
2011-08-31 10:20:19 28750 500
2011-08-31 10:20:19 28750 207
2011-08-31 10:20:51 28750 293
2011-08-31 10:21:04 28730 3000
2011-08-31 10:21:09 28725 1000
2011-08-31 10:21:09 28725 1029
2011-08-31 10:21:10 28720 500
2011-08-31 10:21:35 28700 525
2011-08-31 10:21:35 28700 475
2011-08-31 10:21:38 28725 50
2011-08-31 10:21:38 28745 350
2011-08-31 10:22:40 28713 350
2011-08-31 10:22:58 28700 327
2011-08-31 10:22:58 28700 373
2011-08-31 10:23:09 28720 2029
2011-08-31 10:23:18 28720 50
2011-08-31 10:23:26 28720 150
2011-08-31 10:23:38 28700 50
2011-08-31 10:23:54 28700 762
2011-08-31 10:23:54 28700 38
2011-08-31 10:23:57 28700 112
2011-08-31 10:23:57 28700 2500
2011-08-31 10:24:00 28700 3388
2011-08-31 10:24:11 28700 1534
2011-08-31 10:24:11 28700 3466
2011-08-31 10:24:11 28700 1706
2011-08-31 10:24:14 28700 794
2011-08-31 10:24:26 28700 2288
2011-08-31 10:24:40 28719 2000
2011-08-31 10:24:48 28703 15
2011-08-31 10:24:50 28737 1000
2011-08-31 10:24:50 28737 30
2011-08-31 10:25:35 28731 1077
2011-08-31 10:25:38 28735 200
2011-08-31 10:25:38 28737 2232
2011-08-31 10:25:50 28737 100
2011-08-31 10:25:54 28737 1288
2011-08-31 10:25:57 28725 829
2011-08-31 10:26:07 28710 1000
2011-08-31 10:26:16 28700 10000
2011-08-31 10:26:36 28701 485
2011-08-31 10:26:36 28700 1947
2011-08-31 10:26:44 28701 1068
2011-08-31 10:26:44 28700 1432
2011-08-31 10:26:45 28700 4121
2011-08-31 10:26:45 28700 1566
2011-08-31 10:26:45 28700 794
2011-08-31 10:26:45 28700 2524
2011-08-31 10:26:45 28700 991
2011-08-31 10:26:45 28700 2244
2011-08-31 10:26:53 28680 250
2011-08-31 10:26:58 28680 750
2011-08-31 10:27:09 28676 200
2011-08-31 10:27:19 28700 500
2011-08-31 10:27:19 28700 1500
2011-08-31 10:27:32 28675 300
2011-08-31 10:27:42 28699 1000
2011-08-31 10:27:42 28700 30
2011-08-31 10:27:53 28675 700
2011-08-31 10:28:03 28657 6
2011-08-31 10:28:15 28698 500
2011-08-31 10:28:15 28699 530
2011-08-31 10:30:34 28699 470
2011-08-31 10:30:34 28700 1854
2011-08-31 10:30:34 28700 1000
2011-08-31 10:30:34 28700 500
2011-08-31 10:30:35 28700 191
2011-08-31 10:30:40 28699 150
2011-08-31 10:30:41 28700 1663
2011-08-31 10:30:48 28700 1030
2011-08-31 10:30:51 28700 824
2011-08-31 10:30:57 28700 843


#####################################
# Create VWAP data #
#####################################

func.vwap <- function(my.data)
{
vwap <- sum(my.data[,1]*my.data[,2])/sum(my.data[,2])
}

my.DayVWAP <- func.vwap(my.xts)

my.test <- rollapply(my.xts,20,func.vwap, by.column=FALSE)

根据 James 的建议添加了 by.column = FALSE 以修复 rollapply 中的错误。

如果我没有提供足够的信息,请告诉我。

提前致谢埃德

最佳答案

将参数 by.column=FALSE 添加到您的 rollapply 语句中:

my.test <- rollapply(my.xts,20,func.vwap,by.column=FALSE) 

关于r - 基于时间应用滚动函数(日内),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/7267947/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com