- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
编辑:为了清晰起见,更改了示例 df
我有一个数据框,类似于下面给出的数据框(除了真实的数据框有几千行和几千列,并且值是 float ):
df = pd.DataFrame([[6,5,4,3,8], [6,5,4,3,6], [1,1,3,9,5], [0,1,2,7,4], [2, 0, 0, 4, 0])
0 1 2 3 4
0 6 5 4 3 8
1 6 5 4 3 6
2 1 1 3 9 5
3 0 1 2 7 4
4 2 0 0 4 0
从此数据框中,我想删除所有值都低于或等于任何其他行的所有行。对于这个简单的示例,应删除第 1 行和第 3 行(分别由第 0 行和第 2 行“主导”):
filtered df:
0 1 2 3 4
0 6 5 4 3 8
2 1 1 3 9 5
4 2 0 0 4 0
如果该方法可以考虑浮点错误,那就更好了,因为我的真实数据帧包含 float (即,不要删除所有值都较低/相等的行,这些值不应低于一个小量(例如 0.0001)。
我解决这个问题的最初想法如下:
列表理解代码:
selected_row = df.loc[0
[(df.loc[r]<=selected_row).all() and (df.loc[r]<selected_row).any() for r in range(len(df))]
[False, True, False, False, False]
但这似乎效率不高。任何有关如何(有效)解决此问题的建议将不胜感激。
最佳答案
我们可以尝试使用 broadcasting
:
import pandas as pd
df = pd.DataFrame([
[6, 5, 4, 3, 8], [6, 5, 4, 3, 6], [1, 1, 3, 9, 5],
[0, 1, 2, 7, 4], [2, 0, 0, 4, 0]
])
# Need to ensure only one of each row present since comparing to 1
# there needs to be one and only one of each row
df = df.drop_duplicates()
# Broadcasted comparison explanation below
cmp = (df.values[:, None] <= df.values).all(axis=2).sum(axis=1) == 1
# Filter using the results from the comparison
df = df[cmp]
df
:
0 1 2 3 4
0 6 5 4 3 8
2 1 1 3 9 5
4 2 0 0 4 0
直觉:
通过 DataFrame 广播比较操作:
(df.values[:, None] <= df.values)
[[[ True True True True True]
[ True True True True False]
[False False False True False]
[False False False True False]
[False False False True False]] # df vs [6 5 4 3 8]
[[ True True True True True]
[ True True True True True]
[False False False True False]
[False False False True False]
[False False False True False]] # df vs [6 5 4 3 6]
[[ True True True False True]
[ True True True False True]
[ True True True True True]
[False True False False False]
[ True False False False False]] # df vs [1 1 3 9 5]
[[ True True True False True]
[ True True True False True]
[ True True True True True]
[ True True True True True]
[ True False False False False]] # df vs [0 1 2 7 4]
[[ True True True False True]
[ True True True False True]
[False True True True True]
[False True True True True]
[ True True True True True]]] # df vs [2 0 0 4 0]
然后我们可以检查all
在axis=2
上:
(df.values[:, None] <= df.values).all(axis=2)
[[ True False False False False] # Rows le [6 5 4 3 8]
[ True True False False False] # Rows le [6 5 4 3 6]
[False False True False False] # Rows le [1 1 3 9 5]
[False False True True False] # Rows le [0 1 2 7 4]
[False False False False True]] # Rows le [2 0 0 4 0]
然后我们可以使用sum
总计有多少行小于或等于:
(df.values[:, None] <= df.values).all(axis=2).sum(axis=1)
[1 2 1 2 1]
只有 1 行小于或等于(仅自匹配)的行是要保留的行。因为我们drop_duplicates
数据框中不会有重复项,因此唯一的 True
值将是自匹配值以及小于或等于的值:
(df.values[:, None] <= df.values).all(axis=2).sum(axis=1) == 1
[ True False True False True]
这将成为 DataFrame 的过滤器:
df = df[[True, False, True, False, True]]
df
:
0 1 2 3 4
0 6 5 4 3 8
2 1 1 3 9 5
4 2 0 0 4 0
关于pandas - 从 Pandas 数据框中删除 'dominated' 行(所有值都低于任何其他行的值的行),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68522283/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!