- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想弄清楚如何将函数和包传递给 boot()
运行并行计算时的功能。在循环中加载包或定义函数似乎非常昂贵。 foreach()
我经常用于其他并行任务的函数有一个 .packages 和 .export 参数,可以很好地处理这个问题(见 SO question ),但我不知道如何用引导包来做到这一点。
下面是一个无意义的例子,显示了切换到并行时会发生什么:
library(boot)
myMean <- function(x) mean(x)
meaninglessTest <- function(x, i){
return(myMean(x[i]))
}
x <- runif(1000)
bootTest <- function(){
out <- boot(data=x, statistic=meaninglessTest, R=10000, parallel="snow", ncpus=4)
return(boot.ci(out, type="perc"))
}
bootTest()
myMean
.
R/ncpus
的偶数作业批次- 这不是默认行为有什么原因吗?
docall(c, clusterApply(cl, splitList(x, length(cl)), lapply,
fun, ...))
> library(boot)
> set.seed(10)
> x <- runif(1000)
>
> Reps <- 10^4
> start_time <- Sys.time()
> res <- boot(data=x, statistic=function(x, i) mean(x[i]),
+ R=Reps, parallel="no")
> Sys.time()-start_time
Time difference of 0.52335 secs
>
> start_time <- Sys.time()
> res <- boot(data=x, statistic=function(x, i) mean(x[i]),
+ R=Reps, parallel="snow", ncpus=4)
> Sys.time()-start_time
Time difference of 3.539357 secs
>
> Reps <- 10^5
> start_time <- Sys.time()
> res <- boot(data=x, statistic=function(x, i) mean(x[i]),
+ R=Reps, parallel="no")
> Sys.time()-start_time
Time difference of 5.749831 secs
>
> start_time <- Sys.time()
> res <- boot(data=x, statistic=function(x, i) mean(x[i]),
+ R=Reps, parallel="snow", ncpus=4)
> Sys.time()-start_time
Time difference of 23.06837 secs
最佳答案
如果要并行执行的函数(在本例中为 meaninglessTest
)有额外的依赖项(例如 myMean
),标准的解决方案是通过 clusterExport
将这些依赖项导出到集群中。功能。这需要创建一个集群对象并将其传递给 boot
通过“cl”参数:
library(boot)
library(parallel)
myMean <- function(x) mean(x)
meaninglessTest <- function(x, i){
return(myMean(x[i]))
}
cl <- makePSOCKcluster(4)
clusterExport(cl, 'myMean')
x <- runif(1000)
bootTest <- function() {
out <- boot(data=x, statistic=meaninglessTest, R=10000,
parallel="snow", ncpus=4, cl=cl)
return(boot.ci(out, type="perc"))
}
bootTest()
stopCluster(cl)
boot
使用。很多次并且不需要重新初始化,所以它不是那么昂贵。
clusterEvalQ
:
clusterEvalQ(cl, library(randomForest))
clusterCall
执行它。这非常适合在每个工作人员上执行一次功能。
parLapply
在这种情况下,函数用于并行执行工作,它确实均匀且高效地拆分工作,但这并不能保证比使用
lapply
顺序运行更好的性能。 .但也许我误解了你的问题。
关于r - 多集群并行方法中启动中的可变范围,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/17879766/
有没有办法同时运行 2 个不同的代码块。我一直在研究 R 中的并行包,它们似乎都基于在循环中运行相同的函数。我正在寻找一种同时运行不同函数的方法(循环的 1 次迭代)。例如,我想在某个数据对象上创建一
无论如何增加 Parallel.For 启动后的循环次数?示例如下: var start = 0; var end = 5; Parallel.For(start, end, i => { C
我是 Golang 的新手,正在尝试了解并发和并行。我阅读了下面提到的关于并发和并行的文章。我执行了相同的程序。但没有得到相同的(混合字母和字符)输出。首先获取所有字母,然后获取字符。似乎并发不工作,
我正在寻找同时迭代 R 中两个或多个字符向量/列表的方法,例如。有没有办法做这样的事情: foo <- c('a','c','d') bar <- c('aa','cc','dd') for(i in
我对 Raku 很陌生,我对函数式方法有疑问,尤其是 reduce。 我最初有这样的方法: sub standardab{ my $mittel = mittel(@_); my $foo =
我最近花了很多时间来学习实时音频处理的细节,我发现的大多数库/工具都是c / c++代码或脚本/图形语言的形式,并在其中编译了c / c++代码。引擎盖。 使用基于回调的API,与GUI或App中的其
我正在使用 JMeter 进行图像负载测试。我有一个图像名称数组并遍历该数组,我通过 HTTP 请求获取所有图像。 -> loop_over_image - for loop controller
我整个晚上都在困惑这个问题...... makeflags = ['--prefix=/usr','--libdir=/usr/lib'] rootdir='/tmp/project' ps = se
我正在尝试提高计算图像平均值的方法的性能。 为此,我使用了两个 For 语句来迭代所有图像,因此我尝试使用一个 Parallel For 来改进它,但结果并不相同。 我做错了吗?或者是什么导致了差异?
假设您有一个并行 for 循环实现,例如ConcRT parallel_for,将所有工作放在一个 for 循环体内总是最好的吗? 举个例子: for(size_t i = 0; i < size()
我想并行运行一部分代码。目前我正在使用 Parallel.For 如何让10、20或40个线程同时运行 我当前的代码是: Parallel.For(1, total, (ii) =>
我使用 PAY API 进行了 PayPal 自适应并行支付,其中无论用户(买家)购买什么,都假设用户购买了总计 100 美元的商品。在我的自适应并行支付中,有 2 个接收方:Receiver1 和
我正在考虑让玩家加入游戏的高效算法。由于会有大量玩家,因此算法应该是异步的(即可扩展到集群中任意数量的机器)。有细节:想象有一个无向图(每个节点都是一个玩家)。玩家之间的每条边意味着玩家可以参加同一场
我有一个全局变量 volatile i = 0; 和两个线程。每个都执行以下操作: i++; System.out.print(i); 我收到以下组合。 12、21 和 22。 我理解为什么我没有得到
我有以下称为 pgain 的方法,它调用我试图并行化的方法 dist: /***************************************************************
我有一个 ruby 脚本读取一个巨大的表(约 2000 万行),进行一些处理并将其提供给 Solr 用于索引目的。这一直是我们流程中的一大瓶颈。我打算在这里加快速度,我想实现某种并行性。我对 Ru
我正在研究 Golang 并遇到一个问题,我已经研究了几天,我似乎无法理解 go routines 的概念以及它们的使用方式。 基本上我是在尝试生成数百万条随机记录。我有生成随机数据的函数,并将创建一
我希望 for 循环使用 go 例程并行。我尝试使用 channel ,但没有用。我的主要问题是,我想在继续之前等待所有迭代完成。这就是为什么在它不起作用之前简单地编写 go 的原因。我尝试使用 ch
我正在使用 import Control.Concurrent.ParallelIO.Global main = parallel_ (map processI [1..(sdNumber runPa
我正在尝试通过 makePSOCKcluster 连接到另一台计算机: library(parallel) cl ... doTryCatch -> recvData -> makeSOCKm
我是一名优秀的程序员,十分优秀!