gpt4 book ai didi

python - 精确模型在 keras-tf 上收敛,但在 keras 上不收敛

转载 作者:行者123 更新时间:2023-12-02 01:47:24 25 4
gpt4 key购买 nike

我正在努力预测 EWMA (exponential weighted moving average) formula使用简单的 RNN 来处理时间序列。已经发布了here .

虽然模型使用 keras-tf(从tensorflow import keras)完美地收敛,但使用 native keras(导入 keras)却无法使用完全相同的代码。

收敛模型代码(keras-tf):

from tensorflow import keras
import numpy as np

np.random.seed(1337) # for reproducibility

def run_avg(signal, alpha=0.2):
avg_signal = []
avg = np.mean(signal)
for i, sample in enumerate(signal):
if np.isnan(sample) or sample == 0:
sample = avg
avg = (1 - alpha) * avg + alpha * sample
avg_signal.append(avg)
return np.array(avg_signal)

def train():
x = np.random.rand(3000)
y = run_avg(x)
x = np.reshape(x, (-1, 1, 1))
y = np.reshape(y, (-1, 1))

input_layer = keras.layers.Input(batch_shape=(1, 1, 1), dtype='float32')
rnn_layer = keras.layers.SimpleRNN(1, stateful=True, activation=None, name='rnn_layer_1')(input_layer)
model = keras.Model(inputs=input_layer, outputs=rnn_layer)

model.compile(optimizer=keras.optimizers.SGD(lr=0.1), loss='mse')
model.summary()

print(model.get_layer('rnn_layer_1').get_weights())
model.fit(x=x, y=y, batch_size=1, epochs=10, shuffle=False)
print(model.get_layer('rnn_layer_1').get_weights())

train()

非收敛模型代码:

from keras import Model
from keras.layers import SimpleRNN, Input
from keras.optimizers import SGD

import numpy as np

np.random.seed(1337) # for reproducibility

def run_avg(signal, alpha=0.2):
avg_signal = []
avg = np.mean(signal)
for i, sample in enumerate(signal):
if np.isnan(sample) or sample == 0:
sample = avg
avg = (1 - alpha) * avg + alpha * sample
avg_signal.append(avg)
return np.array(avg_signal)

def train():
x = np.random.rand(3000)
y = run_avg(x)
x = np.reshape(x, (-1, 1, 1))
y = np.reshape(y, (-1, 1))

input_layer = Input(batch_shape=(1, 1, 1), dtype='float32')
rnn_layer = SimpleRNN(1, stateful=True, activation=None, name='rnn_layer_1')(input_layer)
model = Model(inputs=input_layer, outputs=rnn_layer)


model.compile(optimizer=SGD(lr=0.1), loss='mse')
model.summary()

print(model.get_layer('rnn_layer_1').get_weights())
model.fit(x=x, y=y, batch_size=1, epochs=10, shuffle=False)
print(model.get_layer('rnn_layer_1').get_weights())

train()

虽然在 tf-keras 收敛模型中,损失最小化并且权重非常接近 EWMA 公式,但在非收敛模型中,损失爆炸到 nan。据我所知,唯一的区别是导入类的方式。

我对这两种实现使用了相同的随机种子。我正在使用 keras 2.2.4 和 tensorflow 版本 1.13.1(其中包括版本 2.2.4-tf 中的 keras)的 Windows PC、Anaconda 环境中工作。

对此有什么见解吗?

最佳答案

这可能是因为 TF Keras 之间 SimpleRNN 的实现存在差异(1 行)和 Native Keras .

下面提到的Line是在TF Keras中实现的,在Keras中没有实现。

self.input_spec = [InputSpec(ndim=3)]

您上面提到的这种差异的一个例子。

我想使用 Keras 的 Sequential 类来演示类似的情况。

下面的代码适用于 TF Keras:

from tensorflow import keras
import numpy as np
from tensorflow.keras.models import Sequential as Sequential

np.random.seed(1337) # for reproducibility

def run_avg(signal, alpha=0.2):
avg_signal = []
avg = np.mean(signal)
for i, sample in enumerate(signal):
if np.isnan(sample) or sample == 0:
sample = avg
avg = (1 - alpha) * avg + alpha * sample
avg_signal.append(avg)
return np.array(avg_signal)

def train():
x = np.random.rand(3000)
y = run_avg(x)
x = np.reshape(x, (-1, 1, 1))
y = np.reshape(y, (-1, 1))

# SimpleRNN model
model = Sequential()
model.add(keras.layers.Input(batch_shape=(1, 1, 1), dtype='float32'))
model.add(keras.layers.SimpleRNN(1, stateful=True, activation=None, name='rnn_layer_1'))
model.compile(optimizer=keras.optimizers.SGD(lr=0.1), loss='mse')
model.summary()

print(model.get_layer('rnn_layer_1').get_weights())
model.fit(x=x, y=y, batch_size=1, epochs=10, shuffle=False)
print(model.get_layer('rnn_layer_1').get_weights())

train()

但是如果我们使用 Native Keras 运行相同的操作,我们会收到如下所示的错误:

TypeError: The added layer must be an instance of class Layer. Found: Tensor("input_1_1:0", shape=(1, 1, 1), dtype=float32)

如果我们替换下面的代码行

model.add(Input(batch_shape=(1, 1, 1), dtype='float32'))

使用下面的代码,

model.add(Dense(32, batch_input_shape=(1,1,1), dtype='float32'))

即使是带有 Keras 实现的模型也几乎与 TF Keras 实现相似。

如果您想从代码角度了解这两种情况的实现差异,可以引用以下链接:

https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/layers/recurrent.py#L1364-L1375

https://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py#L1082-L1091

关于python - 精确模型在 keras-tf 上收敛,但在 keras 上不收敛,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57396482/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com