- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用spark_read_csv将大型数据库复制到Spark中,但我收到以下错误作为输出:
Error: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 16.0 failed 4 times, most recent failure: Lost task 0.3 in stage 16.0 (TID 176, 10.1.2.235): java.lang.IllegalArgumentException: requirement failed: Decimal precision 8 exceeds max precision 7
data_tbl <- spark_read_csv(sc, "data", "D:/base_csv", delimiter = "|", overwrite = TRUE)
这是一个大数据集,大约有 580 万条记录,在我的数据集中,我有 Int
、num
和 chr
类型的数据。
最佳答案
我认为您有几个选择,具体取决于您使用的 Spark 版本
Spark >=1.6.1
来自这里:https://docs.databricks.com/spark/latest/sparkr/functions/read.df.html看来,您可以专门指定您的模式以强制它使用 double
csvSchema <- structType(structField("carat", "double"), structField("color", "string"))
diamondsLoadWithSchema<- read.df("/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv",
source = "csv", header="true", schema = csvSchema)
Spark < 1.6.1考虑 test.csv
1,a,4.1234567890
2,b,9.0987654321
你可以轻松地提高效率,但我认为你明白要点
linesplit <- function(x){
tmp <- strsplit(x,",")
return ( tmp)
}
lineconvert <- function(x){
arow <- x[[1]]
converted <- list(as.integer(arow[1]), as.character(arow[2]),as.double(arow[3]))
return (converted)
}
rdd <- SparkR:::textFile(sc,'/path/to/test.csv')
lnspl <- SparkR:::map(rdd, linesplit)
ll2 <- SparkR:::map(lnspl,lineconvert)
ddf <- createDataFrame(sqlContext,ll2)
head(ddf)
_1 _2 _3
1 1 a 4.1234567890
2 2 b 9.0987654321
注意:SparkR:::方法是私有(private)的是有原因的,文档说“使用它时要小心”
关于r - Sparklyr - 小数精度 8 超过最大精度 7,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44932305/
当我尝试使用 Rstudio 和 sparklyr 使用此代码访问 Hive 表时: library(sparklyr) library(dplyr) Sys.setenv(SPARK_HOME="/
以下示例描述了如何在不使用 dplyr 和 sparklyr 聚合行的情况下计算不同值的数量。 有没有不破坏命令链的解决方法? 更一般地说,如何在 sparklyr 数据帧上使用类似 sql 的窗口函
我正在尝试在 sparklyr 中复制 tidyr:complete 函数。我有一个包含一些缺失值的数据框,我必须填写这些行。在 dplyr/tidyr 中我可以这样做: data
我想从 sparklyr 中我的 Spark DataFrame 的每个类中采样 n 行。 我知道 dplyr::sample_n 函数不能用于此 (Is sample_n really a rand
希望将一些 R 代码转换为 Sparklyr,函数如 lmtest::coeftest() 和 sandwich::sandwich()。尝试开始使用 Sparklyr 扩展,但对 Spark API
我想跳过(退出)文本文件的前两行: 据我所知,使用 sparklyr 方法是不可能的 spark_read_csv .有一些解决方法可以解决这个简单的问题吗? 我知道 sparklyr extensi
在 Spark 2.0 中,我可以将多个文件路径合并为一个加载(参见例如 How to import multiple csv files in a single load?)。 如何使用 spark
Sparklyr 处理分类变量 我来自 R 背景,习惯于在后端处理分类变量(作为因子)。对于 Sparklyr,使用 string_indexer 或 onehotencoder 非常令人困惑。 例如
我正在尝试在sparklyr中读取2GB〜(5mi行)的.csv: bigcsvspark <- spark_read_csv(sc, "bigtxt", "path",
我很抱歉这个问题很难完全重现,因为它涉及一个正在运行的 spark 上下文(在下面引用为 sc),但我正在尝试在 sparklyr 中设置一个 hadoopConfiguration,专门用于从 RS
我有一个朴素贝叶斯模型在 sparklyr 中使用 ml_naive_bayes 运行,如下所示: library(sparklyr) library(dplyr) sc model Call: m
我在使用 ft_.. sparklyr R 包中的函数时遇到了一些问题。 ft_bucketizer 有效,但 ft_normalizer 或 ft_min_max_scaler 无效。这是一个例子:
即使在相当小的数据集上,我也会遇到堆空间错误。我可以确定我没有耗尽系统内存。例如,考虑一个包含大约 20M 行和 9 列的数据集,它在磁盘上占用 1GB。我在具有 30GB 内存的 Google Co
尝试在 sparklyr 中拆分一个字符串,然后将其用于连接/过滤 我尝试了将字符串标记化然后将其分离到新列的建议方法。这是一个可重现的示例(请注意,我必须将在 copy_to 之后变成字符串“NA”
我对 sparklyr 和 spark 很陌生,所以如果这不是执行此操作的“spark”方式,请告诉我。 我的问题 我有 50 多个 .txt 文件,每个文件大约 300 mb,都在同一个文件夹中,将
我对 Spark 很陌生,目前正在通过 sparkly 包使用 R API 使用它。我从 hive 查询创建了一个 Spark 数据框。源表中未正确指定数据类型,我试图通过利用来自 dplyr 的函数
我需要使用 sparklyr 计算 R 中两个字符串之间的距离。有没有办法使用 stringdist 或任何其他包?我想使用cousine distance。此距离用作 stringdist 函数的方
在以下示例中,我加载了一个 Parquet 文件,该文件包含 meta 中 map 对象的嵌套记录。 field 。 sparklyr似乎在处理这些方面做得很好。然而tidyr::unnest不会转换
我是 sparklyr 的新手(但熟悉 spark 和 pyspark),我有一个非常基本的问题。我正在尝试根据部分匹配过滤列。在 dplyr 中,我会这样写我的操作: businesses %>%
我在 Spark 中有一个数据框,希望在按特定列分组后计算 0.1 分位数。 例如: > library(sparklyr) > library(tidyverse) > con = spark_co
我是一名优秀的程序员,十分优秀!