- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我似乎找不到正确的方法来模拟平均值不为零的 AR(1) 时间序列。
我需要 53 个数据点,rho = .8,平均值 = 300。
然而,arima.sim(list(order=c(1,0,0), ar=.8), n=53, mean=300, sd=21)
给我 1500 年代的值。例如:
1480.099 1480.518 1501.794 1509.464 1499.965 1489.545 1482.367 1505.103(以此类推)
我也试过arima.sim(n=52, model=list(ar=c(.8)), start.innov=300, n.start=1)
但它只是像这样倒计时:
238.81775870 190.19203239 151.91292491 122.09682547 96.27074057 [6] 77.17105923 63.15148491 50.04211711 39.68465916 32.46837830 24.78357345 21.27437183 15.93486092 13.40199333 10.99762449 8.70208879 5.62264196 3.15086491 2.13809323 1.30009732
我试过 arima.sim(list(order=c(1,0,0), ar=.8), n=53,sd=21) + 300
这似乎给出了正确的答案。例如:
280.6420 247.3219 292.4309 289.8923 261.5347 279.6198 290.6622 295.0501
264.4233 273.8532 261.9590 278.0217 300.6825 291.4469 291.5964 293.5710
285.0330 274.5732 285.2396 298.0211 319.9195 324.0424 342.2192 353.8149
等等..
但是,我怀疑这是在做正确的事情吗?那么它是否仍然与正确的数字自动相关?
最佳答案
您的最后一个选择是可以得到所需的平均值“mu”。它从模型生成数据:
(y[t] - mu) = phi * (y[t-1] - mu) +\epsilon[t], epsilon[t] ~ N(0, sigma=21),
t=1,2,...,n。
您的第一种方法设置了一个截距,“alpha”,而不是一个均值:
y[t] = alpha + phi * y[t-1] + epsilon[t]。
您的第二个选项将初始值 y[0] 设置为 300。只要 |phi|<1,此初始值的影响将在几个周期后消失,不会产生任何影响
在系列水平上。
编辑
您在模拟数据中观察到的标准偏差值是正确的。请注意,AR(1) 过程的方差 y[t] 不等于创新的方差 epsilon[t]。 AR(1)过程的方差,sigma^2_y,可以得到如下:
Var(y[t]) = Var(alpha) + phi^2 * Var(y[t-1]) + Var(epsilon[t])
由于过程是平稳的 Var(y[t]) = Var(t[t-1]) 我们称之为 sigma^2_y。因此,我们得到:
sigma^2_y = 0 + phi^2 * sigma^2_y + sigma^2_epsilon
sigma^2_y = sigma^2_epsilon/(1 - phi^2)
对于您正在使用的参数的值,您有:
sigma_y = sqrt(21^2/(1 - 0.8^2)) = 35。
关于r - ar(1) 非零均值模拟,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27821238/
我想获取每一行某些列的平均值。 我有此数据: w=c(5,6,7,8) x=c(1,2,3,4) y=c(1,2,3) length(y)=4 z=data.frame(w,x,y) 哪个返回:
类似于Numpy mean with condition我的问题将其扩展到对矩阵进行操作:计算矩阵 rdat 的行均值,跳过某些单元格 - 在本例中我使用 0 作为要跳过的单元格 - 就好像这些值从一
我有一个数据集,其中的列标题为产品名称、品牌、评级(1:5)、评论文本、评论有用性。我需要的是提出一个使用评论的推荐算法。我这里必须使用 python 进行编码。数据集采用.csv 格式。 为了识别数
我在 R^3 中有 n 个点,我想用 k 个椭球体或圆柱体覆盖它们(我不在乎;以更容易的为准)。我想大约最小化卷的并集。假设 n 是数万,k 是少数。开发时间(即简单性)比运行时更重要。 显然我可以运
我创建了一个计算均值、中位数和方差的程序。该程序最多接受 500 个输入。当有 500 个输入(我的数组的最大大小)时,我的所有方法都能完美运行。当输入较少时,只有“平均值”计算器起作用。这是整个程序
我已经完成了距离的计算并存储在推力 vector 中,例如,我有 2 个质心和 5 个数据点,我计算距离的方法是,对于每个质心,我首先计算 5 个数据点的距离并存储在阵列,然后与距离一维阵列中的另一个
下面的代码适用于每一列的总数,但我想计算出每个物种的平均值。 # Read data file into array data = numpy.genfromtxt('data/iris.csv',
我有一个独特的要求,我需要两个数据帧的公共(public)列(每行)的平均值。 我想不出这样做的 pythonic 方式。我知道我可以遍历两个数据框并找到公共(public)列,然后获取键匹配的行的平
我把它扔在那里,希望有人会尝试过这种荒谬的事情。我的目标是获取输入图像,并根据每个像素周围小窗口的标准差对其进行分割。基本上,这在数学上应该类似于高斯或盒式过滤器,因为它将应用于编译时(甚至运行时)用
有没有一种方法可以对函数进行向量化处理,使输出成为均值数组,其中每个均值代表输入数组的 0 索引值的均值?循环这个非常简单,但我正在努力尽可能高效。例如0 = 均值(0),1 = 均值(0-1),N
我正在尝试生成均值为 1 的指数分布随机数。我知道如何获取具有均值和标准差的正态分布随机数。我们可以通过normal(mean, standard_deviation)得到它,但是我不知道如何得到指数
我遇到了一段 Python 代码,它的内容类似于以下内容: a = np.array([1,2,3,4,5,6,7]) a array([1, 2, 3, 4, 5, 6, 7]) np.mean(a
我有两个数组。 x 是独立变量,counts 是 x 出现的次数,就像直方图一样。我知道我可以通过定义一个函数来计算平均值: def mean(x,counts): return np.sum
我有在纯 python 中计算平均速度的算法: speed = [...] avg_speed = 0.0 speed_count = 0 for i in speed: if i > 0:
我正在尝试计算扩展窗口的平均值,但是数据结构使得之前的答案至少缺少一点所需的内容(最接近的是:link)。 我的数据看起来像这样: Company TimePeriod IndividualID
我正在尝试实现 Kmeans python中的算法将使用cosine distance而不是欧几里得距离作为距离度量。 我知道使用不同的距离函数可能是致命的,应该小心使用。使用余弦距离作为度量迫使我改
有谁知道自组织映射 (SOM) 与 k 均值相比效果如何?我相信通常在颜色空间(例如 RGB)中,SOM 是将颜色聚类在一起的更好方法,因为视觉上不同的颜色之间的颜色空间存在重叠( http://ww
注意:我希望能得到更多有关如何处理和提出此类解决方案的指南,而不是解决方案本身。 我的系统中有一个非常关键的功能,它在特定上下文中显示为排名第一的分析热点。它处于 k-means 迭代的中间(已经是多
我有一个 pandas 数据框,看起来像这样: 给定行中的每个值要么是相同的数字,要么是 NaN。我想计算数据框中所有两列组合的平均值、中位数和获取计数,其中两列都不是 NaN。 例如,上述数据帧的结
任何人都知道如何调整简单的 K 均值算法来处理 this form 的数据集. 最佳答案 在仍然使用 k-means 的同时处理该形式的数据的最直接方法是使用 k-means 的内核化版本。 JSAT
我是一名优秀的程序员,十分优秀!