- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我刚刚开始使用 lasagne 和 Theano 在 Python 上进行一些机器学习。
我正在尝试修改 Theano 中的 softmax 类。我想更改激活函数 (softmax) 的计算方式。我不想将 e_x 除以 e_x.sum(axis=1),而是将 e_x 除以三个连续数字的总和。
例如,结果如下:
sm[0] = e_x[0]/(e_x[0]+e_x[1]+e_x[2])
sm[1] = e_x[1]/(e_x[0]+e_x[1]+e_x[2])
sm[2] = e_x[2]/(e_x[0]+e_x[1]+e_x[2])
sm[3] = e_x[3]/(e_x[3]+e_x[4]+e_x[5])
sm[4] = e_x[4]/(e_x[3]+e_x[4]+e_x[5])
sm[5] = e_x[5]/(e_x[3]+e_x[4]+e_x[5])
等等……
问题是我不太明白theano是如何进行计算的。
这是我的主要问题。仅更改 softmax 类中的 perform() 函数就足够了吗?
这是原始的 perform() 函数:
def perform(self, node, input_storage, output_storage):
x, = input_storage
e_x = numpy.exp(x - x.max(axis=1)[:, None])
sm = e_x / e_x.sum(axis=1)[:, None]
output_storage[0][0] = sm
这是我修改过的 perform()
def myPerform(self, node, input_storage, output_storage):
x, = input_storage
e_x = numpy.exp(x - x.max(axis=1)[:, None])
sm = numpy.zeros_like(e_x)
for i in range(0,symbolCount):
total = e_x[3*i] + e_x[3*i+1] + e_x[3*i+2]
sm[3*i] = e_x[3*i]/total
sm[3*i+1] = e_x[3*i+1]/total
sm[3*i+2] = e_x[3*i+2]/total
output_storage[0][0] = sm
使用当前代码,当我在烤宽面条中使用预测方法时出现“无法排序的类型:int()>str()”错误。
最佳答案
对于这样的事情,您最好通过符号表达式构建自定义 softmax,而不是创建(或修改)操作。
您的自定义 softmax 可以根据符号表达式来定义。这样做会“免费”为您提供梯度(和其他 Theano 操作点点滴滴),但运行速度可能比自定义操作稍慢。
这是一个例子:
import numpy
import theano
import theano.tensor as tt
x = tt.matrix()
# Use the built in softmax operation
y1 = tt.nnet.softmax(x)
# A regular softmax operation defined via ordinary Theano symbolic expressions
y2 = tt.exp(x)
y2 = y2 / y2.sum(axis=1)[:, None]
# Custom softmax operation
def custom_softmax(a):
b = tt.exp(a)
b1 = b[:, :3] / b[:, :3].sum(axis=1)[:, None]
b2 = b[:, 3:] / b[:, 3:].sum(axis=1)[:, None]
return tt.concatenate([b1, b2], axis=1)
y3 = custom_softmax(x)
f = theano.function([x], outputs=[y1, y2, y3])
x_value = [[.1, .2, .3, .4, .5, .6], [.1, .3, .5, .2, .4, .6]]
y1_value, y2_value, y3_value = f(x_value)
assert numpy.allclose(y1_value, y2_value)
assert y3_value.shape == y1_value.shape
a = numpy.exp(.1) + numpy.exp(.2) + numpy.exp(.3)
b = numpy.exp(.4) + numpy.exp(.5) + numpy.exp(.6)
c = numpy.exp(.1) + numpy.exp(.3) + numpy.exp(.5)
d = numpy.exp(.2) + numpy.exp(.4) + numpy.exp(.6)
assert numpy.allclose(y3_value, [
[numpy.exp(.1) / a, numpy.exp(.2) / a, numpy.exp(.3) / a, numpy.exp(.4) / b, numpy.exp(.5) / b, numpy.exp(.6) / b],
[numpy.exp(.1) / c, numpy.exp(.3) / c, numpy.exp(.5) / c, numpy.exp(.2) / d, numpy.exp(.4) / d, numpy.exp(.6) / d]
]), y3_value
关于deep-learning - 修改Theano.tensor.nnet.softmax中的perform函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32302599/
如前所述 here ,交叉熵不是多标签分类的合适损失函数。我的问题是“这个事实是否也适用于 softmax 的交叉熵?”。如果是,如何与this part匹配的文件。 我应该提到我的问题的范围在cnt
这两个函数之间的区别已在这篇 pytorch 帖子中描述:What is the difference between log_softmax and softmax? 是:exp(x_i) / ex
我正在使用 tensorflow 编写一个简单的逻辑回归。我发现当使用 tf.nn.softmax 时,算法收敛得更快,最终精度更高。如果切换到我自己的 softmax 实现,网络收敛速度较慢,最终精
使用 softmax 作为 tf.keras 中的连续层和使用 softmax 作为密集层的激活函数有什么区别? tf.keras.layers.Dense(10, activation=tf.nn.
keras.activations.softmax 和 keras.layers.Softmax 之间有什么区别?为什么同一个激活函数有两种定义? keras.activations.softmax:
我正在使用带有二进制交叉熵的 Sigmoid 激活函数训练一个二进制分类器,它提供了大约 98% 的良好准确度。 当我使用带有 categorical_crossentropy 的 softmax 进
我正在尝试实现类似完全卷积网络的东西,其中最后一个卷积层使用过滤器大小 1x1 并输出“分数”张量。分数张量的形状为 [Batch, height, width, num_classes]。 我的问题
我目前正在用 Java 实现我自己的神经网络。我已经实现了一些常见的激活函数,例如 Sigmoid 或 ReLU,但我不知道如何实现 Softmax。 我想要一个像这样的方法 private doub
我目前正在用 Java 实现我自己的神经网络。我已经实现了一些常见的激活函数,例如 Sigmoid 或 ReLU,但我不知道如何实现 Softmax。 我想要一个像这样的方法 private doub
我在 github 上找到了一个很好的强化学习示例,我想使用它。我的问题是输出是正态分布层(下面的代码),因为它用于连续 Action 空间,而我想将它用于离散 Action 空间,其中模型有 4 个
我已经学习了 ML,并且一直在 Andrew N.G 的 coursera 类(class)中学习 DL,每次他谈到线性分类器时,权重都只是一个一维向量。即使在分配期间,当我们将图像滚动到一维向量(像
我一直在研究斯坦福的深度学习教程,但我在其中一个练习(带有 softmax 输出层的神经网络)上遇到了问题。这是我在 R 中的实现: train <- function(training.set, l
我正在 Octave 中实现 softmax 回归。目前,我正在使用使用以下成本函数和导数的非矢量化实现。 来源:Softmax Regression 现在我想在 Octave 中实现它的矢量化版本。
我是机器学习的新手,正在学习如何在 python 中实现 softmax,我正在关注以下线程 Softmax function - python 我在做一些分析,如果我们有一个数组 batch = n
下面是我尝试计算 softmax 的一小段代码。它适用于单个阵列。但是对于更大的数字,比如 1000 等,它会爆炸 import numpy as np def softmax(x): print
例如,我有一个 CNN,它试图从 MNIST 数据集(使用 Keras 编写的代码)中预测数字。它有 10 个输出,形成 softmax 层。只有一个输出可以为真(独立于 0 到 9 的每个数字):
pytorch教程 ( https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-bli
我找到了一些 MNIST 手写字符分类问题的示例代码。代码开头如下: import tensorflow as tf # Load in the data mnist = tf.keras.datas
这是 Keras 模型的最后一层。 model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossent
在神经网络的输出层中,通常使用softmax函数来近似概率分布: 由于指数的原因,计算成本很高。为什么不简单地执行 Z 变换,使所有输出均为正,然后通过将所有输出除以所有输出之和来进行归一化? 最佳答
我是一名优秀的程序员,十分优秀!