gpt4 book ai didi

从手稿复制 ODE 食物网模型

转载 作者:行者123 更新时间:2023-12-02 01:26:03 26 4
gpt4 key购买 nike

我正在尝试复制发布的湖泊食物网络模型 here 。该模型代表两条食物链(沿海与远洋),由顶级捕食者(鱼类)连接。我已经对模型进行了编码,但是当我在 2-3 个时间步骤后运行它时,模型会生成 NaN。我已经多次检查我的代码,寻找括号等问题,但找不到问题。

如果我将fish 初始丰度设置为 0,模型就会运行,因此我认为问题一定出在模型的鱼组件上。

以下是方程式:

Ap = 中上层资源,Z = 中上层浮游动物,Pp = 中上层捕食者,F = 鱼类,Al = 滨海资源,I = 无脊椎动物,Pl = 滨海捕食者。

enter image description here

这是我对模型进行编码的尝试:

library(deSolve)

# define the model
vade_2005_model <- function(Time, State, Pars){

with(as.list(c(State, Pars)), {

# pelagic components -----------------------------------------------

# resource
pel_res_dt <- (rPel * AP * (1 - (AP/(KT * q)))) - (aZP * ((Z * AP)/(AP + bZP)))

# zooplankton
pel_zoo_dt <- (ef * aZP * ((Z * AP)/(AP + bZP))) - (dZP * Z) - (aPP * ((PP * Z)/(Z + bPP)))

# pelagic predator (PP)
pel_PP_dt <- (ef * aPP * ((PP * Z)/(Z + bPP))) - (dPP * PP) - (aFP * del * ((fish * PP)/(PP + bFA)))


# top predator - fish ---------------------------------------------
fish_dt <- (ef * ((del * aFP * ((PP * fish)/(PP * bFA))) + ((1 - del) * aFL * ((PL * fish)/(PL * bFA))))) - (dFA * fish)

# Littoral component -----------------------------------------------

# resource
lit_res_dt <- (rLit * AL * (1 - (AL/(KT * (1 - q))))) - (aIL * ((I * AL)/(AL + bIL)))

# littoral invert
lit_inv_dt <- (ef * aIL * ((I * AL)/(AL + bIL))) - (dIL * I) - (aPL * ((PL * I)/(I + bPL)))

# littoral predator (PL)
lit_PL_dt <- (ef * aPL * ((PL * I)/(I + bPL))) - (dPL * PL) - (aFL * (1 - del) * ((fish * PL)/(PL + bFA)))

list(c(pel_res_dt, pel_zoo_dt, pel_PP_dt,
fish_dt,
lit_res_dt, lit_inv_dt, lit_PL_dt))
})
}


# model parameters (taken from the manuscript)
pars = c(rPel = 1.0, # per capital growth rate of pelagic resource
rLit = 0.8, # per capital growth rate of littoral resource
aZP = 1.55, # Attack rate of zooplankton (in pelagic)
aPP = 1.35, # Attack rate of PP (in pelagic)
aFP = 1.05, # Attack rate of fish (in pelagic)
aFL = 1.0, # Attack rate of fish (in littoral)
aIL = 1.45, # Attack rate of invert (in littoral)
aPL = 1.25, # Attack rate of PL (in littoral)
bZP = 0.2, # Half saturation rate of zooplankton (in pelagic)
bPP = 0.2, # Half saturation rate of PP (in pelagic)
bFA = 0.2, # Half saturation rate of fish (in all)
bIL = 0.2, # Half saturation rate of invert (in littoral)
bPL = 0.2, # Half saturation rate of PL (in littoral)
dZP = 0.6, # biomass loss rate of zooplankton (in pelagic)
dPP = 0.15, # biomass loss rate of PP (in pelagic)
dPL = 0.15, # biomass loss rate of PL (in littoral)
dIL = 0.6, # biomass loss rate of invert (in littoral)
dFA = 0.1, # biomass loss rate of fish (all habitat)
ef = 0.8, # conversion efficiency of resource biomass into consumer biomass
del = 0.5, # fish preference (1 = PP, 0 = PL)
KT = 1, # lake carrying capacity
q = 0.5 # prop. productivity in pelagic food chain
)

# initial densities (assumed as not given in the manuscript)
yini <- c(AP = 0.5,
Z = 0.5,
PP = 0.5,
fish = 0.5,
AL = 0.5,
I = 0.5,
PL = 0.5
)

# time steps
times <- seq(0, 1000, by = 1)

# run model
out <- ode(yini, times, vade_2005_model, pars, method = "ode45")
out

如果有人能看到我哪里出错了,我将不胜感激!

最佳答案

tl;dr 你的“鱼”方程中有一个拼写错误(你是相乘而不是相加分母)。 (我错过了您在问题中已经说过您已将问题定位到这个方程!不过,也许下面的调试过程会有所帮助......)

我在较小的时间范围内运行了具有更小的 delta-t 的模型,以尝试查看哪些状态变量存在问题。

out <- ode(yini, seq(0, 4, length.out = 101), vade_2005_model, pars, method = "ode45")
matplot(out[,1], out[,-1], type = "l", log = "y", ylim = c(1e-6, 1e6),
lty = 1:7, col = 1:7)
legend("topright",
legend = colnames(out)[-1],
col = 1:7,
lty = 1:7)

time dynamics: fish explode, PP/PL collapse

看起来鱼类种群正在爆炸,而 PP/PL 种群正在崩溃(这会自然地从鱼类种群爆炸中得出;原则上,如果方程适定,这不会导致数学 问题,但这会导致数值问题也就不足为奇了)。

回去查看 dF/dt 方程,果然发现了拼写错误。

使用更正后的分母从 0 重新运行到 1000:

enter image description here

关于从手稿复制 ODE 食物网模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/74647501/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com