gpt4 book ai didi

r - 如何使用 data.table 高效地创建新变量并分配列名?

转载 作者:行者123 更新时间:2023-12-02 01:24:05 24 4
gpt4 key购买 nike

我需要根据如下数据计算新列:

structure(list(english_score = c(3L, 4L, 3L, 3L, 4L, 3L, 4L, 
2L, 4L, 2L, 3L, 3L, 2L, 2L, 3L, 4L, 3L, 3L, 4L, 3L, 4L, 3L, 2L
), math_score = c(4L, 4L, 3L, 4L, 4L, 4L, 3L, 2L, 3L, 3L, 4L,
2L, 4L, 2L, 4L, 2L, 3L, 3L, 2L, 2L, 2L, 4L, 2L), science_score = c(3L,
4L, 4L, 4L, 3L, 4L, 4L, 3L, 3L, 2L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
2L, 3L, 2L, 3L, 3L, 4L)), row.names = c(NA, -23L), class = c("data.table",
"data.frame"), .internal.selfref = <pointer: 0x000002478ee34d50>)

我想制作这样的东西:

structure(list(english_score = c(3L, 4L, 3L, 3L, 4L, 3L, 4L, 
2L, 4L, 2L, 3L, 3L, 2L, 2L, 3L, 4L, 3L, 3L, 4L, 3L, 4L, 3L, 2L
), math_score = c(4L, 4L, 3L, 4L, 4L, 4L, 3L, 2L, 3L, 3L, 4L,
2L, 4L, 2L, 4L, 2L, 3L, 3L, 2L, 2L, 2L, 4L, 2L), science_score = c(3L,
4L, 4L, 4L, 3L, 4L, 4L, 3L, 3L, 2L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
2L, 3L, 2L, 3L, 3L, 4L), english_level = c("Level C", "Level D",
"Level C", "Level C", "Level D", "Level C", "Level D", "Level B",
"Level D", "Level B", "Level C", "Level C", "Level B", "Level B",
"Level C", "Level D", "Level C", "Level C", "Level D", "Level C",
"Level D", "Level C", "Level B"), math_level = c("Level D", "Level D",
"Level C", "Level D", "Level D", "Level D", "Level C", "Level B",
"Level C", "Level C", "Level D", "Level B", "Level D", "Level B",
"Level D", "Level B", "Level C", "Level C", "Level B", "Level B",
"Level B", "Level D", "Level B"), science_level = c("Level C",
"Level D", "Level D", "Level D", "Level C", "Level D", "Level D",
"Level C", "Level C", "Level B", "Level C", "Level D", "Level D",
"Level D", "Level D", "Level D", "Level D", "Level B", "Level C",
"Level B", "Level C", "Level C", "Level D")), row.names = c(NA,
-23L), class = c("data.table", "data.frame"), .internal.selfref = <pointer:
0x000002478ee34d50>)

到目前为止,我的方法是使用函数来计算新变量的水平...

myfunction<-function(x){case_when(x<2~"Level A",
x>1 & x<3~"Level B",
x>2 & x<4~"Level C",
x>3~"Level D")}

....然后,创建新变量并一一指定它们的名称。

DT[, english_level:=lapply(.SD, myfunction), .SDcols='english_score']

DT[, math_level:=lapply(.SD, myfunction), .SDcols='math_score']

DT[, science_level:=lapply(.SD, myfunction), .SDcols='science_score']

如何简化此过程,最好使用 data.table?

最佳答案

我会这样做(我将你的数据称为DT,因为utils::data()是一个基本的R函数):

score_cols  <- grep("_score$", names(DT), value = TRUE)
level_cols <- sub("_score", "_level", score_cols)

DT[,
(level_cols) := lapply(.SD, myfunction),
.SDcols = score_cols
]

此外,您的 myfunction() 使用 dplyr::case_when()。这可以工作,但某些 dplyr 函数与 data.table 发生冲突( Between() first() last() 与我当前拥有的版本)。您可以将其替换为 data.table::fcase()

myfunction <- function(x) {
fcase(
x == 1, "Level A",
x == 2, "Level B",
x == 3, "Level C",
x == 4, "Level D"
)
}

这应该也比 dplyr 版本更快。

此外,使用此特定函数,您实际上可以通过将字母表中的第 n 个字母指定为等级来替换键入逻辑时的大小写:

assign_letter_grade  <- function(n) {
paste("Level", LETTERS[n])
}

关于r - 如何使用 data.table 高效地创建新变量并分配列名?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/75329709/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com