- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
许多 numpy 函数提供了使用轴 = 参数在特定轴上操作的选项。我的问题是
import pandas as pd
import numpy as np
def nanmoving_mean(data,window,axis=0):
kw = {'center':True,'window':window,'min_periods':1}
if len(data.shape)==1:
return pd.Series(data).rolling(**kw).mean().as_matrix()
elif len(data.shape)>=2:
tmp = np.swapaxes(data,0,axis)
tmpshp = tmp.shape
tmp = np.reshape( tmp, (tmpshp[0],-1), order='C' )
tmp = pd.DataFrame(tmp).rolling(**kw).mean().as_matrix()
tmp = np.reshape( tmp, tmpshp, order='C' )
return np.swapaxes(tmp,0,axis)
else:
print('Invalid dimension!')
return None
data = np.random.randint(10,size=(2,3,6))
print(data)
nanmoving_mean(data,window=3,axis=2)
最佳答案
我们可以有一个使用 2D
convolution 的方法.
基本步骤是:
NaNs
与 0s
因为我们需要对输入数据进行加窗求和。 Scipy's convolve2d
获取窗口求和对于数据值NaNs
的面具.我们将使用边界元素作为零。 NaNs
的窗口计数从窗口大小获取负责求和的有效元素的计数。 intervaled-summations
也可以通过
Scipy's
1D uniform-filter
获得那相对来说效率更高。另一个好处是我们可以指定要执行这些求和/平均的轴。
2D convolution
和
1D uniform filter
,下面列出的方法很少。
from scipy.signal import convolve2d as conv2
from scipy.ndimage.filters import uniform_filter1d as uniff
def nanmoving_mean_numpy(data, W): # data: input array, W: Window size
N = data.shape[-1]
hW = (W-1)//2
nan_mask = np.isnan(data)
data1 = np.where(nan_mask,0,data)
value_sums = conv2(data1.reshape(-1,N),np.ones((1,W)),'same', boundary='fill')
nan_sums = conv2(nan_mask.reshape(-1,N),np.ones((1,W)),'same', boundary='fill')
value_sums.shape = data.shape
nan_sums.shape = data.shape
b_sizes = hW+1+np.arange(hW) # Boundary sizes
count = np.hstack(( b_sizes , W*np.ones(N-2*hW), b_sizes[::-1] ))
return value_sums/(count - nan_sums)
def nanmoving_mean_numpy_v2(data, W): # data: input array, W: Window size
N = data.shape[-1]
hW = (W-1)//2
nan_mask = np.isnan(data)
data1 = np.where(nan_mask,0,data)
value_sums = uniff(data1,size=W, axis=-1, mode='constant')*W
nan_sums = conv2(nan_mask.reshape(-1,N),np.ones((1,W)),'same', boundary='fill')
nan_sums.shape = data.shape
b_sizes = hW+1+np.arange(hW) # Boundary sizes
count = np.hstack(( b_sizes , W*np.ones(N-2*hW,dtype=int), b_sizes[::-1] ))
out = value_sums/(count - nan_sums)
out = np.where(np.isclose( count, nan_sums), np.nan, out)
return out
def nanmoving_mean_numpy_v3(data, W): # data: input array, W: Window size
N = data.shape[-1]
hW = (W-1)//2
nan_mask = np.isnan(data)
data1 = np.where(nan_mask,0,data)
nan_avgs = uniff(nan_mask.astype(float),size=W, axis=-1, mode='constant')
b_sizes = hW+1+np.arange(hW) # Boundary sizes
count = np.hstack(( b_sizes , W*np.ones(N-2*hW), b_sizes[::-1] ))
scale = ((count/float(W)) - nan_avgs)
out = uniff(data1,size=W, axis=-1, mode='constant')/scale
out = np.where(np.isclose( scale, 0), np.nan, out)
return out
In [807]: # Create random input array and insert NaNs
...: data = np.random.randint(10,size=(20,30,60)).astype(float)
...:
...: # Add 10% NaNs across the data randomly
...: idx = np.random.choice(data.size,size=int(data.size*0.1),replace=0)
...: data.ravel()[idx] = np.nan
...:
...: W = 5 # Window size
...:
In [808]: %timeit nanmoving_mean(data,window=W,axis=2)
...: %timeit nanmoving_mean_numpy(data, W)
...: %timeit nanmoving_mean_numpy_v2(data, W)
...: %timeit nanmoving_mean_numpy_v3(data, W)
...:
10 loops, best of 3: 22.3 ms per loop
100 loops, best of 3: 3.31 ms per loop
100 loops, best of 3: 2.99 ms per loop
1000 loops, best of 3: 1.76 ms per loop
In [811]: # Create random input array and insert NaNs
...: data = np.random.randint(10,size=(120,130,160)).astype(float)
...:
...: # Add 10% NaNs across the data randomly
...: idx = np.random.choice(data.size,size=int(data.size*0.1),replace=0)
...: data.ravel()[idx] = np.nan
...:
In [812]: %timeit nanmoving_mean(data,window=W,axis=2)
...: %timeit nanmoving_mean_numpy(data, W)
...: %timeit nanmoving_mean_numpy_v2(data, W)
...: %timeit nanmoving_mean_numpy_v3(data, W)
...:
1 loops, best of 3: 796 ms per loop
1 loops, best of 3: 486 ms per loop
1 loops, best of 3: 275 ms per loop
10 loops, best of 3: 161 ms per loop
关于performance - numpy数组子维度上的python操作,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41311268/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!