- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想预测多变量时间序列的 future 值。我使用此代码作为模板,但将输出激活修改为线性
https://gist.github.com/karpathy/587454dc0146a6ae21fc
输入数据是一个 8 维 double 向量序列。输出是比输入序列早一个时间段的相同 8 维向量。这就是选择线性激活的原因。
model = Sequential()
model.add(LSTM(512, input_dim=len(chars),return_sequences=True)) #minesh witout specifying the input_length
model.add(LSTM(512, return_sequences=True)) #- original
model.add(Dropout(0.2))
model.add(TimeDistributed(Dense(len(chars))))
model.add(Activation('linear'))
model.compile(loss='mean_squared_error', optimizer='rmsprop')
我是 Keras 和 RNN 的新手。有人可以确认这个设计吗?
最佳答案
您在每个样本中有 8x2 个输入,对于这 8 个时间步长中的每一个,您都编码了 512 个您跟踪的特征。话又说回来,512个值……参数的数量一定很大吧?我希望你有足够的数据和模式的多样性来使用大量的参数,否则你会过拟合。
我还建议您像这样对 LSTM 使用 dropout:
model.add(LSTM(512, return_sequences=True, dropout_W = 0.2)) #- original
还有 dropout_U 功能,但我不会使用它。如您所知,LSTM 有多个门,每个门都是密集层,因此您可以选择要在哪个门上应用 dropout。最佳做法是将其应用于输入门 (dropout_W) 而不是循环门 (dropout_U)。
否则整体架构是有意义的。
关于time-series - 使用 Keras 预测 future 时间序列值的 lstm,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42603459/
有时,我倾向于(重复)执行next next a 来获取特定元素。当您需要 2 次或更少的遍历时,这很有效。然而,它很快就会变得很麻烦。对于这个简单的情况,循环的开销太大。 幸运的是,如果您知道位置,
我在使用值为 numpy 数组的 pandas.Series 时遇到了以下奇怪的行为。 % s = pd.Series([5,2], index=[6,7]) %s.loc[6] 5 <-- ret
我有一个看起来像这样的数据框(小版本): A B C 0 125 ADB [AF:12] 1 189 ACB [AF:78, AF:85, AF:98] 2 148 ADB
我在 Pandas (s1) 中创建了一个系列,用于根据原始 DataFrame 中的列 ('d1') 计算这些固定数字 (1-14) 的实例数。我想要的显示在这里(时报); s1 Last
pandas series 有两个密切相关的属性:Series.index 和 Series.index.values。 这两个中的第一个返回某些 pandas 索引类型的当前索引。它是可变的,可用于
我正在尝试使用 KNNClassifier 训练模型。我将数据拆分如下: X_train, X_test, y_train, y_test = train_test_split(X_bow, y, t
我只是尝试对我的数据框进行排序并使用了以下函数: df[df.count >= df.count.quantile(.95)] 返回错误: AttributeError: 'function' obj
我试过了 print(type(numbers[2])) numbers[2].tolist() print(type(numbers[2])) 那是行不通的。我得到了 Numbers 是一个矩阵
我想从时间戳中减去日期。settings.dataset_end_date 是一个 pandas._libs.tslibs.timestamps.Timestamp引用['date_of_patent
我有一个带有数据的 pandas.core.series.Series 0 [00115840, 00110005, 001000033, 00116000... 1 [00267285,
s = pd.Series( nr.randint( 0, 10, 5 ), index=nr.randint(0, 10, 5 ) ) s 输出 1 3 7 6 2 0 9
pandas.DataFrame.query() 方法非常适合在加载或绘图时(预/后)过滤数据。它对于方法链特别方便。 我发现自己经常想将相同的逻辑应用于 pandas.Series,例如在完成诸如返
这个问题在这里已经有了答案: Difference between map, applymap and apply methods in Pandas (11 个回答) 去年关闭。 Series.ma
我正在总结一系列中的值,但根据我如何做,我会得到不同的结果。我试过的两种方法是: sum(df['series']) df['series'].sum() 为什么它们会返回不同的值? 示例代码。 s
我有一个字符串说 type(abc) >>str 我想把它转换成 pandas.core.series.Series。 我在 pandas 文档中看到有一段代码 pd.to_string() 将 pa
我有一个字符串说 type(abc) >>str 我想把它转换成 pandas.core.series.Series。 我在 pandas 文档中看到有一段代码 pd.to_string() 将 pa
这个问题在这里已经有了答案: Pandas: select DF rows based on another DF (5 个答案) 关闭 5 年前。 如果我有一个包含开始时间和结束时间的 DataF
我尝试了 Series.index 和 Series.keys() 并且输出是相似的。我找不到它们之间的显着差异。它们是否适用于某些特殊条件? 我在 Anaconda 上的 Jupyter Noteb
我有一个(非常大的)系列,其中包含关键字(例如,每行包含多个由“-”分隔的关键字 In[5]: word_series Out[5]: 0 the-cat-is-pink 1
我需要使用 pandas.read_excel 通过 Python 获取 Excel 电子表格最后一个单元格的值。该单元格包含一个日期,我需要将其分配给 Python 脚本中的变量。格式为2018-1
我是一名优秀的程序员,十分优秀!