- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
%in%
R 中的运算符检查是否有其他内容,这很明显。但我对性能很好奇。在 Python 中,搜索一个项目集合或字典键是 O(1),因为我认为集合是哈希表。但是在 Python 中搜索列表中的项目可能是 O(n) 和一个长度为 n 的列表,因为它将逐个元素搜索。那么如何%in%
在幕后为 R 中的不同数据类型工作?与向量相反,在 R 中的因子 dtype 中搜索某些内容似乎需要 5 倍的时间,但似乎是 %in%
线性搜索向量。起初我认为一个因子数据类型可能就像 Python 中的一个集合,因为它们都将某些东西减少到它的唯一值,但根本不是:https://www.tutorialspoint.com/r/r_data_types.htm .这是一些示例代码,因此您可以了解我对运行时的含义:
library(microbenchmark)
s <- seq(5000)
microbenchmark(1 %in% s, times = 100000)
# searching for a term further in the list takes longer
microbenchmark(4999 %in% s, times = 100000)
s <- as.factor(s)
# searching for something in a factor takes way longer than a vector
# I think because everything is converted to a character dtype
microbenchmark(4999 %in% s, times = 100000)
最佳答案
正如我们在评论中所讨论的那样,R 中有一个固有的类似集合的机制,尽管它确实有点骇人听闻,而且可能并不完全符合预期。 (这个 hack 的一些限制记录在 hashmap
包中。)
R 中的环境是内部散列的。这可用于存储具有随机访问(读取和写入)的任意对象。为了检查一些基准,我将生成几种类型的向量来证实您最初的关注并展示使用环境可以带来的改进。
我们将首先生成一些类似的数据,以各种方式排序以突出您提出的问题:
library(microbenchmark)
set.seed(2)
s1 <- seq(5000)
s2 <- rev(s1) # to highlight the bias you highlighted, since the vector is sorted
s3 <- sample(s1) # to shake things up a little
s4 <- as.character(s3) # comparison with character-based named in 'l' and 'e'
l <- list()
e <- new.env(parent = emptyenv())
for (i in s4) {
assign(i, TRUE, envir = e)
l[[i]] <- TRUE
}
head(names(l)) # unordered
# [1] "925" "3512" "2866" "840" "4716" "4713"
list
在其对象中确实具有序数,这支持其对象未被散列的假设:
which(names(l) == "1")
# [1] 2291
e[[1]]
# Error in e[[1]] : wrong arguments for subsetting an environment
NULL
之外的任何东西都足以满足我们的需求。我们将使用一个简单的
!is.null(e[[...]])
来测试特定的成员资格:
!is.null(e[["1"]])
# [1] TRUE
!is.null(e[["10000"]])
# [1] FALSE
!is.null(l[["1"]])
# [1] TRUE
!is.null(l[["10000"]])
# [1] FALSE
microbenchmark(
vec1 = 1 %in% s1,
vec2 = 1 %in% s2,
vec3 = 1 %in% s3,
vec4 = "1" %in% s4,
lst = is.null(l[["1"]]),
env = is.null(e[["1"]]),
times = 1000
)
# Warning in microbenchmark(vec1 = 1 %in% s1, vec2 = 1 %in% s2, vec3 = 1 %in% :
# Could not measure a positive execution time for 6 evaluations.
# Unit: nanoseconds
# expr min lq mean median uq max neval
# vec1 5835 6929 12493.25 7294 9482 3214588 1000
# vec2 9117 9847 16660.73 10212 12764 4081050 1000
# vec3 7294 8388 19983.63 8752 10576 3274759 1000
# vec4 11670 12400 15423.03 12764 14223 74394 1000
# lst 20787 21517 24561.72 21881 22975 143317 1000
# env 0 1 461.25 365 366 18235 1000
list
表现不佳,尽管它似乎比向量表现得更好(在
max
情况下,相对无意义)。同样不足为奇的是,根据我们声称环境使用内部 has 的说法,它表现得非常好。是 O(1) 吗?
microbenchmark(
samp5 = sapply(as.character(sample(5000, size = 5)), function(a) is.null(e[[a]])),
samp50 = sapply(as.character(sample(5000, size = 50)), function(a) is.null(e[[a]])),
samp500 = sapply(as.character(sample(5000, size = 500)), function(a) is.null(e[[a]])),
samp5000 = sapply(as.character(sample(5000, size = 5000)), function(a) is.null(e[[a]]))
)
# Unit: microseconds
# expr min lq mean median uq max neval
# samp5 25.893 32.4565 49.58154 40.4795 58.3485 169.573 100
# samp50 108.309 119.4310 156.45244 135.8410 167.3850 681.938 100
# samp500 935.750 1023.2715 1265.29732 1073.9610 1172.6055 6841.985 100
# samp5000 9410.008 10337.5520 11137.82968 10650.0765 11280.0485 15455.548 100
samp5
似乎需要更长的时间。这并不奇怪,因为存在与
sapply
、采样和其他事情相关的开销。然而,剩余的行似乎随着样本数量的增加而扩展得很好。这表明对于一些基本的集合操作确实是 O(1)。
sapply(...)
技巧,因为与向量和列表不同,R 的环境不允许使用向量进行子集化。
e[[c("1")]]
# [1] TRUE
e[[c("1","10")]]
# Error in e[[c("1", "10")]] :
# wrong arguments for subsetting an environment
hashmap
提出(并修复)的声明之一。
newset <- function() new.env(parent = emptyenv())
setadd <- function(set, n) set[[n]] <- TRUE
setdel <- function(set, n) set[[n]] <- NULL
setcontains <- function(set, n) !is.null(set[[n]])
setmembers <- function(set) names(set)
e <- newset()
setcontains(e, "a")
# [1] FALSE
setadd(e, "a")
setcontains(e, "a")
# [1] TRUE
setmembers(e)
# [1] "a"
setdel(e, "a")
setcontains(e, "a")
# [1] FALSE
关于r - R中%in%的时间复杂度;有没有办法让它像 Python 中的集合一样 O(1)?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47317333/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!