gpt4 book ai didi

java - 使用 GenericRecords 时,Flink Avro 序列化显示 "not serializable"错误

转载 作者:行者123 更新时间:2023-12-02 01:06:29 25 4
gpt4 key购买 nike

我真的很难让 Flink 与正在运行的 Kafka 实例正确通信,使用来自 Confluence 架构注册表的 Avro 架构(对于两者键和值)。

经过一段时间的思考和重组我的程序,我能够插入我的实现到目前为止:

生产者方法

    public static FlinkKafkaProducer<Tuple2<GenericRecord,GenericRecord>> kafkaAvroGenericProducer() {  
final Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "--.-.-.--:9092");
properties.put("schema.registry.url", "http://--.-.-.---:8081");
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, KVSerializationSchema.class.getName()); //wrong class should not matter
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, KVSerializationSchema.class.getName()); //wrong class but should not matter


return new FlinkKafkaProducer<Tuple2<GenericRecord,GenericRecord>>("flink_output",
new GenericSerializer("flink_output", schemaK, schemaV, "http://--.-.-.---:8081"),
properties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE);

}
<小时/>

GenericSerializer.java

package com.reeeliance.flink;

import org.apache.avro.Schema;
import org.apache.avro.generic.GenericRecord;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.kafka.clients.producer.ProducerRecord;
import flinkfix.ConfluentRegistryAvroSerializationSchema;

public class GenericSerializer implements KafkaSerializationSchema<Tuple2<GenericRecord,GenericRecord>>{

private String topic;
private Schema schemaKey;
private Schema schemaValue;
private String registryUrl;

public GenericSerializer(String topic, Schema schemaK, Schema schemaV, String url) {
super();
this.topic = topic;
this.schemaKey = schemaK;
this.schemaValue = schemaV;
this.registryUrl = url;
}

public GenericSerializer() {
super();
}

@Override
public ProducerRecord<byte[], byte[]> serialize(Tuple2<GenericRecord,GenericRecord> element, Long timestamp) {
byte[] key = ConfluentRegistryAvroSerializationSchema.forGeneric(topic + "-key", schemaKey, registryUrl).serialize(element.f0);
byte[] value = ConfluentRegistryAvroSerializationSchema.forGeneric(topic + "-value", schemaValue, registryUrl).serialize(element.f1);

return new ProducerRecord<byte[], byte[]>(topic, key, value);
}

}
<小时/>

但是,当我执行作业时,它在准备阶段失败,而作业实际上没有运行,并出现以下错误:

Exception in thread "main" org.apache.flink.api.common.InvalidProgramException: [H_EQUNR type:STRING pos:0] is not serializable. The object probably contains or references non serializable fields.
at org.apache.flink.api.java.ClosureCleaner.clean(ClosureCleaner.java:151)
at org.apache.flink.api.java.ClosureCleaner.clean(ClosureCleaner.java:126)
at org.apache.flink.api.java.ClosureCleaner.clean(ClosureCleaner.java:126)
at org.apache.flink.api.java.ClosureCleaner.clean(ClosureCleaner.java:71)
at org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer.<init>(FlinkKafkaProducer.java:617)
at org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer.<init>(FlinkKafkaProducer.java:571)
at org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer.<init>(FlinkKafkaProducer.java:547)
at com.reeeliance.flink.StreamingJob.kafkaAvroGenericProducer(StreamingJob.java:257)
at com.reeeliance.flink.StreamingJob.main(StreamingJob.java:84)
Caused by: java.io.NotSerializableException: org.apache.avro.Schema$Field
- custom writeObject data (class "java.util.ArrayList")
- root object (class "org.apache.avro.Schema$LockableArrayList", [H_EQUNR type:STRING pos:0])
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1182)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
at java.util.ArrayList.writeObject(ArrayList.java:766)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at java.io.ObjectStreamClass.invokeWriteObject(ObjectStreamClass.java:1140)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1496)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1432)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1178)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
at org.apache.flink.util.InstantiationUtil.serializeObject(InstantiationUtil.java:586)
at org.apache.flink.api.java.ClosureCleaner.clean(ClosureCleaner.java:133)
... 8 more
<小时/>

我知道所有类都必须实现可序列化接口(interface)或使其成为 transient ,但我不使用自己的类,并且错误不会解决不可序列化的函数(如通常的线程处理),而是记录或字段。该字段来自键模式,这是一种仅包含这一字段的模式。我认为我的错误在于使用 GenericRecord,它没有实现 Serialized 接口(interface),但我看到 GenericRecord 经常用于这种序列化,所以它对我来说没有任何意义。

ConfluenceRegistryAvroSerializationSchema 类取自 GitHub ,因为它尚未包含在我们使用的当前 Flink 版本(1.9.1)中。我包括了必要的类(class)并更改了类(class),我认为这可能不是我的问题的原因。 (Issue solved)

有人可以帮我调试这个吗?如果您能向我展示一种不同的方法来实现相同的目标,我也将不胜感激,到目前为止,Flink Avro 和 Confluence Schema Registry 的不兼容性一直让我发疯。

最佳答案

异常消息告诉您哪个类不可序列化。

Caused by: java.io.NotSerializableException: org.apache.avro.Schema$Field

问题出在您存储在 GenericSerializer 字段中的 Schema 类。

你可以试试这个:

public class GenericSerializer implements KafkaSerializationSchema<Tuple2<GenericRecord,GenericRecord>>{

private final SerializationSchema<GenericRecord> valueDeserializer;
private final SerializationSchema<GenericRecord> keyDeserializer;

public GenericSerializer(String topic, Schema schemaK, Schema schemaV, String url) {
this.keyDeserializer = ConfluentRegistryAvroSerializationSchema.forGeneric(topic + "-key", schemaKey, registryUrl);
this.valueDeserializer = ConfluentRegistryAvroSerializationSchema.forGeneric(topic + "-value", schemaValue, registryUrl);
}

@Override
public ProducerRecord<byte[], byte[]> serialize(Tuple2<GenericRecord,GenericRecord> element, Long timestamp) {
byte[] key = keySerializer.serialize(element.f0);
byte[] value = valueSerializer.serialize(element.f1);

return new ProducerRecord<byte[], byte[]>(topic, key, value);
}

}

ConfluenceRegistryAvroSerializationSchema 是可序列化的,因此您可以安全地将其存储在 GenericSerializer 中的字段中。

它的性能也会更高,因为不会为每个传入记录重新实例化底层结构。

关于java - 使用 GenericRecords 时,Flink Avro 序列化显示 "not serializable"错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59982631/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com