- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个大的稀疏二进制矩阵(大约 39,000 x 14,000;大多数行只有一个“1”条目)。我想将相似的行聚集在一起,但我最初的计划需要很长时间才能完成:
d <- dist(inputMatrix, method="binary")
hc <- hclust(d, method="complete")
第一步没有完成,所以我不确定第二步会如何。在 R 中,有哪些方法可以有效地对大型稀疏二元矩阵的相似行进行分组?
最佳答案
我编写了一些 Rcpp 代码和 R 代码,可以计算出二进制矩阵的二进制/杰卡德距离。比 dist(x, method = "binary")
快 80 倍。它将输入矩阵转换为原始矩阵,该矩阵是输入的转置(以便位模式在内部处于正确的顺序)。然后在一些 C++ 代码中使用它,将数据作为 64 位无符号整数处理以提高速度。两个向量 x 和 y 的杰卡德距离等于 x ^ y / (x | y)
哪里^
是异或运算符。 Hamming Weight计算用于计算设置的位数,如果xor
的结果或or
非零。
我已将代码放在 github 上 https://github.com/NikNakk/binaryDist/并复制了下面的两个文件。我已经确认结果与 dist(x, method = "binary")
相同对于一些随机数据集。
在 39000 行 x 14000 列、每行 1-5 个数据集上,大约需要 11 分钟。输出距离矩阵为 5.7 GB。
#include <Rcpp.h>
using namespace Rcpp;
//countBits function taken from https://en.wikipedia.org/wiki/Hamming_weight#Efficient_implementation
const uint64_t m1 = 0x5555555555555555; //binary: 0101...
const uint64_t m2 = 0x3333333333333333; //binary: 00110011..
const uint64_t m4 = 0x0f0f0f0f0f0f0f0f; //binary: 4 zeros, 4 ones ...
const uint64_t h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3...
int countBits(uint64_t x) {
x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits
x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits
return (x * h01)>>56; //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
}
// [[Rcpp::export]]
int countBitsFromRaw(RawVector rv) {
uint64_t* x = (uint64_t*)RAW(rv);
return(countBits(*x));
}
// [[Rcpp::export]]
NumericVector bDist(RawMatrix mat) {
int nr(mat.nrow()), nc(mat.ncol());
int nw = nr / 8;
NumericVector res(nc * (nc - 1) / 2);
// Access the raw data as unsigned 64 bit integers
uint64_t* data = (uint64_t*)RAW(mat);
uint64_t a(0);
// Work through each possible combination of columns (rows in the original integer matrix)
for (int i = 0; i < nc - 1; i++) {
for (int j = i + 1; j < nc; j++) {
uint64_t sx = 0;
uint64_t so = 0;
// Work through each 64 bit integer and calculate the sum of (x ^ y) and (x | y)
for (int k = 0; k < nw; k++) {
uint64_t o = data[nw * i + k] | data[nw * j + k];
// If (x | y == 0) then (x ^ y) will also be 0
if (o) {
// Use Hamming weight method to calculate number of set bits
so = so + countBits(o);
uint64_t x = data[nw * i + k] ^ data[nw * j + k];
if (x) {
sx = sx + countBits(x);
}
}
}
res(a++) = (double)sx / so;
}
}
return (res);
}
library("Rcpp")
library("plyr")
sourceCpp("bDist.cpp")
# Converts a binary integer vector into a packed raw vector,
# padding out at the end to make the input length a multiple of packWidth
packRow <- function(row, packWidth = 64L) {
packBits(as.raw(c(row, rep(0, (packWidth - length(row)) %% packWidth))))
}
as.PackedMatrix <- function(x, packWidth = 64L) {
UseMethod("as.PackedMatrix")
}
# Converts a binary integer matrix into a packed raw matrix
# padding out at the end to make the input length a multiple of packWidth
as.PackedMatrix.matrix <- function(x, packWidth = 64L) {
stopifnot(packWidth %% 8 == 0, class(x) %in% c("matrix", "Matrix"))
storage.mode(x) <- "raw"
if (ncol(x) %% packWidth != 0) {
x <- cbind(x, matrix(0L, nrow = nrow(x), ncol = packWidth - (ncol(x) %% packWidth)))
}
out <- packBits(t(x))
dim(out) <- c(ncol(x) %/% 8, nrow(x))
class(out) <- "PackedMatrix"
out
}
# Converts back to an integer matrix
as.matrix.PackedMatrix <- function(x) {
out <- rawToBits(x)
dim(out) <- c(nrow(x) * 8L, ncol(x))
storage.mode(out) <- "integer"
t(out)
}
# Generates random sparse data for testing the main function
makeRandomData <- function(nObs, nVariables, maxBits, packed = FALSE) {
x <- replicate(nObs, {
y <- integer(nVariables)
y[sample(nVariables, sample(maxBits, 1))] <- 1L
if (packed) {
packRow(y, 64L)
} else {
y
}
})
if (packed) {
class(x) <- "PackedMatrix"
x
} else {
t(x)
}
}
# Reads a binary matrix from file or character vector
# Borrows the first bit of code from read.table
readPackedMatrix <- function(file = NULL, text = NULL, packWidth = 64L) {
if (missing(file) && !missing(text)) {
file <- textConnection(text)
on.exit(close(file))
}
if (is.character(file)) {
file <- file(file, "rt")
on.exit(close(file))
}
if (!inherits(file, "connection"))
stop("'file' must be a character string or connection")
if (!isOpen(file, "rt")) {
open(file, "rt")
on.exit(close(file))
}
lst <- list()
i <- 1
while(length(line <- readLines(file, n = 1)) > 0) {
lst[[i]] <- packRow(as.integer(strsplit(line, "", fixed = TRUE)[[1]]), packWidth = packWidth)
i <- i + 1
}
out <- do.call("cbind", lst)
class(out) <- "PackedMatrix"
out
}
# Wrapper for the C++ code which
binaryDist <- function(x) {
if (class(x) != "PackedMatrix") {
x <- as.PackedMatrix(x)
}
dst <- bDist(x)
attr(dst, "Size") <- ncol(x)
attr(dst, "Diag") <- attr(dst, "Upper") <- FALSE
attr(dst, "method") <- "binary"
attr(dst, "call") <- match.call()
class(dst) <- "dist"
dst
}
x <- makeRandomData(2000, 400, maxBits = 5, packed = TRUE)
system.time(bd <- binaryDist(x))
来自原始答案:
其他需要考虑的事情是对两行与单行之间的比较进行一些预过滤,因为距离对于重复项为 0,对于任何其他可能性为 1。
一些相对简单的选项可能会更快,而不需要太多代码,这些选项是 vegdist
vegan 包和 Dist
中的函数amap 包中的函数。如果您有多个核心并利用它支持并行化的事实,后者可能只会更快。
关于r - 在 R 中对大型、非常稀疏的二元矩阵进行聚类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30944701/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!