- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
首先,我从 Mobilenet 下载了一个量化模型。它包含在 Mobilenet_v1_1.0_224 中。然后我做了以下
bazel-bin/tensorflow/contrib/lite/toco/toco \
> --input_files=Sample/mobilenet_v1_1.0_224/quantized_graph.pb \
> --input_format=TENSORFLOW_GRAPHDEF --output_format=TFLITE \
> --output_file=Sample/mobilenet_v1_1.0_224/quantized_graph.tflite --inference_type=QUANTIZED_UINT8 \
> --input_shape=1,224,224,3 \
> --input_array=input \
> --output_array=MobilenetV1/Predictions/Reshape_1 \
> --mean_value=128 \
> --std_value=127
以下是图表的总结
bazel-bin/tensorflow/tools/graph_transforms/summarize_graph --in_graph=Sample/mobilenet_v1_1.0_224/quantized_graph.pb
Found 1 possible inputs: (name=input, type=float(1), shape=[1,224,224,3])
No variables spotted.
Found 1 possible outputs: (name=MobilenetV1/Predictions/Reshape_1, op=Reshape)
Found 4227041 (4.23M) const parameters, 0 (0) variable parameters, and 0 control_edges
Op types used: 91 Const, 27 Add, 27 Relu6, 15 Conv2D, 13 DepthwiseConv2dNative, 13 Mul, 10 Dequantize, 2 Reshape, 1 Identity, 1 Placeholder, 1 BiasAdd, 1 AvgPool, 1 Softmax, 1 Squeeze
To use with tensorflow/tools/benchmark:benchmark_model try these arguments:
bazel run tensorflow/tools/benchmark:benchmark_model -- --graph=Sample/mobilenet_v1_1.0_224/quantized_graph.pb --show_flops --input_layer=input --input_layer_type=float --input_layer_shape=1,224,224,3 --output_layer=MobilenetV1/Predictions/Reshape_1
所以通过转换,我遇到了以下错误
2018-03-01 23:12:03.353786: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.354513: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.355177: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.355556: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.355921: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.356281: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.356632: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.357540: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.358776: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.360448: I tensorflow/contrib/lite/toco/import_tensorflow.cc:1172] Converting unsupported operation: Dequantize 2018-03-01 23:12:03.366319: I tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.cc:39] Before Removing unused ops: 140 operators, 232 arrays (0 quantized) 2018-03-01 23:12:03.371405: I tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.cc:39] Before general graph transformations: 140 operators, 232 arrays (0 quantized) 2018-03-01 23:12:03.374916: I tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.cc:39] After general graph transformations pass 1: 63 operators, 152 arrays (1 quantized) 2018-03-01 23:12:03.376325: I tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.cc:39] Before pre-quantization graph transformations: 63 operators, 152 arrays (1 quantized) 2018-03-01 23:12:03.377492: F tensorflow/contrib/lite/toco/tooling_util.cc:1272] Array MobilenetV1/MobilenetV1/Conv2d_0/Relu6, which is an input to the DepthwiseConv operator producing the output array MobilenetV1/MobilenetV1/Conv2d_1_depthwise/Relu6, is lacking min/max data, which is necessary for quantization. Either target a non-quantized output format, or change the input graph to contain min/max information, or pass --default_ranges_min= and --default_ranges_max= if you do not care about the accuracy of results.
感谢您的帮助
最佳答案
我认为您可能指的是旧的 TensorFlow 量化移动网络模型。
我们更新了可用的量化移动网络模型 here .您的深度乘数为 1.0 和图像大小为 224 的具体链接是 this .
这些 tar 文件也随已转换的 TFLite FlatBuffers 模型一起提供。
希望对您有所帮助!
关于tensorflow - 我正在尝试对 tensorflow lite 模型进行量化的移动网络模型,但遇到错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49064492/
我想使用Tensorflow的transform_graph工具优化图形。我尝试优化 MultiNet 中的图表(以及其他具有类似编码器-解码器架构的)。然而,优化后的图在使用 quantize_we
我试图在 C# 中将图像量化为 10 种颜色,但在绘制量化图像时遇到问题,我已经制作了映射表并且它是正确的,我已经制作了原始图像的副本并且正在更改基于映射表的像素颜色,我使用下面的代码: bm = n
我需要降低UIImage的颜色深度,但是我不知道该怎么做。结果应与在Photoshop中应用索引颜色相同。 我的目标是要具有较低的色深(32色或更低)。也许这是我的错,但我没有找到解决方法。令人惊讶的
我有大量的 numpy 向量,每个形状 (3,) 都有 8 位整数值: vec = np.random.randint(2**8, size=3) 我想通过一些已知的缩减因子将这些向量量化到更小的空间
我正在用 jQuery 编写一个心理学应用程序。我的项目的一部分需要测量用户对声音的 react 时间(用户按下一个键)。因此,我需要在调用(&时间戳)声音文件和实际开始播放之间的延迟尽可能小地播放声
最近,我开始使用 Tensorflow + Keras 创建神经网络,我想尝试 Tensorflow 中提供的量化功能。到目前为止,使用 TF 教程中的示例进行试验效果很好,我有这个基本的工作示例(来
使用当前的 Tensorflow quantization ops ,我将如何在推理过程中模拟每 channel 量化?这paper将每层量化定义为 We can specify a single q
我已经卡住了我的模型并获得了 .pb 文件。然后我在 Linux 上使用 tocoConverter 量化我的模型,因为 Windows 不支持它。我有 quantized_model.tflite。
我将 git 用于一个稍微不寻常的目的——它在我写小说时存储我的文本。 (我知道,我知道......令人讨厌。) 我正在尝试跟踪生产力,并想衡量后续提交之间的差异程度。作家代表“作品”的是“文字”,至
quantization有什么区别和 simplification ? 量化是另一种简化方式吗? 在某些情况下使用量化更好吗? 或者我应该同时使用两者? 最佳答案 几何体的总大小由两个因素控制:点数和
扎克伯格说,Llama3-8B还是太大了,不适合放到手机中,有什么办法? 量化、剪枝、蒸馏,如果你经常关注大语言模型,一定会看到这几个词,单看这几个字,我们很难理解它们都干了些什么,但
相对于
我正在将一些我无法控制的 XML 转换为 XHTML。 XML 模式定义了一个 段落标记和 和 用于列表。 我经常在这个 XML 中找到嵌套在段落中的列表。因此,直接转换会导致 s 嵌套在 中s,
我看到过这样的说法:CNN 的更深层次可以学习识别更复杂的特征。这通常附带一张早期过滤器识别直线/简单曲线的图片,以及后期过滤器识别更复杂图案的图片。它具有直观意义:您距离数据越远,您对数据的理解就越
在使用 C++ 的带有 tensorflow lite 的树莓派上,对象检测无法正常工作。我的代码编译并运行,但输出似乎从未得到正确填充。我是否会遗漏任何依赖项或错误地访问结果? 我遵循了以下教程:
如何衡量/量化 Corona SDK 游戏应用中的“迟缓”? 我在我构建的基于 Corona SDK 的物理游戏(使用 Box2D)上寻找旧手机(例如 iPhone 4、Samsung GT-I900
我正在尝试创建一个 Tensorflow 量化模型,以便使用 Coral USB 加速器进行推理。这是我的问题的一个最小的独立示例: import sys import tensorflow as t
我有一个分位数回归模型,其中包含 1 个回归变量和 1 个回归变量。我想假设检验回归量在每个分位数上都相等。我想到的一种方法是在 {0.01,0.02,....,0.99} 上测试所有 tau。但是,
要求做,在 PGM 文件上使用 KMeans 进行 vector 量化(或图像压缩) 图像是 PMG 文件,其中 b = block 大小,k = 次数,t = 迭代,-g = 初始质心 图像是这样的
我是一名优秀的程序员,十分优秀!