- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
当我尝试从源代码编译 TensorFlow 时,出现以下错误。我正在使用 GPU Docker 镜像来运行构建。从理论上讲,它已经设置了所有适当的依赖项。
主机是 Ubuntu 18.04。我在两台具有最新 Nvidia 驱动程序的不同机器上收到此问题。一个有 1080 TI,另一个有 1060 nvidia 卡。
基于:tensorflow/tensorflow:1.11.0-devel-gpu 构建 docker 镜像。
我以交互模式运行它并运行 ./configure。
这是配置:
./configure
WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown".
You have bazel 0.15.0 installed.
Please specify the location of python. [Default is /usr/bin/python]:
Found possible Python library paths:
/usr/local/lib/python2.7/dist-packages
/usr/lib/python2.7/dist-packages
Please input the desired Python library path to use. Default is [/usr/local/lib/python2.7/dist-packages]
Do you wish to build TensorFlow with jemalloc as malloc support? [Y/n]: y
jemalloc as malloc support will be enabled for TensorFlow.
Do you wish to build TensorFlow with Google Cloud Platform support? [Y/n]: y
Google Cloud Platform support will be enabled for TensorFlow.
Do you wish to build TensorFlow with Hadoop File System support? [Y/n]: y
Hadoop File System support will be enabled for TensorFlow.
Do you wish to build TensorFlow with Amazon AWS Platform support? [Y/n]: y
Amazon AWS Platform support will be enabled for TensorFlow.
Do you wish to build TensorFlow with Apache Kafka Platform support? [Y/n]: y
Apache Kafka Platform support will be enabled for TensorFlow.
Do you wish to build TensorFlow with XLA JIT support? [y/N]: y
XLA JIT support will be enabled for TensorFlow.
Do you wish to build TensorFlow with GDR support? [y/N]: y
GDR support will be enabled for TensorFlow.
Do you wish to build TensorFlow with VERBS support? [y/N]: y
VERBS support will be enabled for TensorFlow.
Do you wish to build TensorFlow with nGraph support? [y/N]: y
nGraph support will be enabled for TensorFlow.
Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: n
No OpenCL SYCL support will be enabled for TensorFlow.
Please specify the location where CUDA 9.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]:
Please specify the location where NCCL 2 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
Do you want to use clang as CUDA compiler? [y/N]: n
nvcc will be used as CUDA compiler.
Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]:
Do you wish to build TensorFlow with MPI support? [y/N]: n
No MPI support will be enabled for TensorFlow.
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]:
Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n
Not configuring the WORKSPACE for Android builds.
Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See tools/bazel.rc for more details.
--config=mkl # Build with MKL support.
--config=monolithic # Config for mostly static monolithic build.
Configuration finished
root@17ed0ddbe2a4:/tensorflow#
这是我得到的错误。
ERROR: /root/.cache/bazel/_bazel_root/68a62076e91007a7908bc42a32e4cff9/external/ngraph_tf/BUILD.bazel:19:1: C++ compilation of rule '@ngraph_tf//:ngraph_tf' failed (Exit 1)
In file included from external/org_tensorflow/tensorflow/core/framework/common_shape_fns.h:22:0,
from external/org_tensorflow/tensorflow/core/framework/resource_mgr.h:24,
from external/org_tensorflow/tensorflow/core/common_runtime/device.h:43,
from external/org_tensorflow/tensorflow/core/common_runtime/device_set.h:23,
from external/org_tensorflow/tensorflow/core/common_runtime/optimization_registry.h:25,
from external/ngraph_tf/src/ngraph_encapsulate_pass.cc:23:
external/org_tensorflow/tensorflow/core/util/tensor_format.h: In function 'tensorflow::TensorShape tensorflow::ShapeFromFormat(tensorflow::TensorFormat, tensorflow::int64, tensorflow::gtl::ArraySlice<long long int>, tensorflow::int64)':
external/org_tensorflow/tensorflow/core/util/tensor_format.h:501:45: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (format == FORMAT_NHWC_VECT_W && dim == spatial.size() - 1) {
^
external/ngraph_tf/src/ngraph_encapsulate_pass.cc: In member function 'tensorflow::Status ngraph_bridge::NGraphEncapsulatePass::EncapsulateFunctions(tensorflow::Graph*)':
external/ngraph_tf/src/ngraph_encapsulate_pass.cc:393:17: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (i < node->requested_inputs().size()) {
^
external/ngraph_tf/src/ngraph_encapsulate_pass.cc:414:42: error: 'class absl::string_view' has no member named 'ToString'
cluster_idx, tensor_id.first.ToString(), tensor_id.second));
^
In file included from external/org_tensorflow/tensorflow/core/platform/default/logging.h:24:0,
from external/org_tensorflow/tensorflow/core/platform/logging.h:25,
from external/org_tensorflow/tensorflow/core/lib/core/refcount.h:22,
from external/org_tensorflow/tensorflow/core/platform/tensor_coding.h:21,
from external/org_tensorflow/tensorflow/core/framework/resource_handle.h:19,
from external/org_tensorflow/tensorflow/core/framework/allocator.h:24,
from external/org_tensorflow/tensorflow/core/common_runtime/device.h:35,
from external/org_tensorflow/tensorflow/core/common_runtime/device_set.h:23,
from external/org_tensorflow/tensorflow/core/common_runtime/optimization_registry.h:25,
from external/ngraph_tf/src/ngraph_encapsulate_pass.cc:23:
external/org_tensorflow/tensorflow/core/util/tensor_format.h: In instantiation of 'T tensorflow::GetTensorDim(tensorflow::gtl::ArraySlice<T>, tensorflow::TensorFormat, char) [with T = long long int; tensorflow::gtl::ArraySlice<T> = absl::Span<const long long int>]':
external/org_tensorflow/tensorflow/core/util/tensor_format.h:452:47: required from here
external/org_tensorflow/tensorflow/core/util/tensor_format.h:420:29: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
CHECK(index >= 0 && index < dimension_attributes.size())
^
external/org_tensorflow/tensorflow/core/platform/macros.h:87:47: note: in definition of macro 'TF_PREDICT_FALSE'
#define TF_PREDICT_FALSE(x) (__builtin_expect(x, 0))
^
external/org_tensorflow/tensorflow/core/util/tensor_format.h:420:3: note: in expansion of macro 'CHECK'
CHECK(index >= 0 && index < dimension_attributes.size())
^
external/org_tensorflow/tensorflow/core/util/tensor_format.h: In instantiation of 'T tensorflow::GetFilterDim(tensorflow::gtl::ArraySlice<T>, tensorflow::FilterTensorFormat, char) [with T = long long int; tensorflow::gtl::ArraySlice<T> = absl::Span<const long long int>]':
external/org_tensorflow/tensorflow/core/util/tensor_format.h:461:54: required from here
external/org_tensorflow/tensorflow/core/util/tensor_format.h:435:29: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
CHECK(index >= 0 && index < dimension_attribute.size())
^
external/org_tensorflow/tensorflow/core/platform/macros.h:87:47: note: in definition of macro 'TF_PREDICT_FALSE'
#define TF_PREDICT_FALSE(x) (__builtin_expect(x, 0))
^
external/org_tensorflow/tensorflow/core/util/tensor_format.h:435:3: note: in expansion of macro 'CHECK'
CHECK(index >= 0 && index < dimension_attribute.size())
^
Target //tensorflow/tools/pip_package:build_pip_package failed to build
我也遇到了 1.10 图片的同样问题。或者尝试直接在主机上从源代码构建 1.10 或 1.11。
最佳答案
似乎在这次提交中解决了 here .
还要检查首先提到它的线程 https://github.com/tensorflow/tensorflow/issues/22583
只需从 master 拉取并尝试再次重建。
关于tensorflow - 无法在 Ubuntu 18.04 上从源代码编译 Tensorflow,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52765294/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!