- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想要一种方法来有效计算 tm::DocumentTermMatrix
的文档之间的 Jaccard 相似度。我可以通过 slam 包对余弦相似度做类似的事情,如 this answer. 所示。我遇到了another question and response在 CrossValidated 上,这是 R 特定的,但关于矩阵代数不一定是最有效的途径。我尝试使用更高效的 slam 函数来实现该解决方案,但没有得到与我使用将 DTM 强制为矩阵并使用 proxy::dist
的效率较低的方法相同的解决方案。 .
如何在 R 中有效计算大型 DocumentTermMatrix 文档之间的 Jaccard 相似度?
#数据和页面
library(Matrix);library(proxy);library(tm);library(slam);library(Matrix)
mat <- structure(list(i = c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 3L, 1L,
2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L), j = c(1L, 1L, 2L, 2L, 3L, 3L,
4L, 4L, 4L, 5L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L), v = c(1,
1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1), nrow = 4L,
ncol = 12L, dimnames = structure(list(Docs = c("1", "2",
"3", "4"), Terms = c("computer", "is", "fun", "not", "too",
"no", "it's", "dumb", "what", "should", "we", "do")), .Names = c("Docs",
"Terms"))), .Names = c("i", "j", "v", "nrow", "ncol", "dimnames"
), class = c("DocumentTermMatrix", "simple_triplet_matrix"), weighting = c("term frequency",
"tf"))
#低效计算(预期输出)
proxy::dist(as.matrix(mat), method = 'jaccard')
## 1 2 3
## 2 0.000
## 3 0.875 0.875
## 4 1.000 1.000 1.000
#我的尝试
A <- slam::tcrossprod_simple_triplet_matrix(mat)
im <- which(A > 0, arr.ind=TRUE)
b <- slam::row_sums(mat)
Aim <- A[im]
stats::as.dist(Matrix::sparseMatrix(
i = im[,1],
j = im[,2],
x = Aim / (b[im[,1]] + b[im[,2]] - Aim),
dims = dim(A)
))
## 1 2 3
## 2 2.0
## 3 0.1 0.1
## 4 0.0 0.0 0.0
输出不匹配。
仅供引用,原文如下:
c("Computer is fun. Not too fun.", "Computer is fun. Not too fun.",
"No it's not, it's dumb.", "What should we do?")
我预计元素 1 和 2 的距离为 0,元素 3 比元素 1 和 4 更接近元素 1(我预计距离最远,因为没有共享单词),如 proxy::dist
中所示。解决方案。
编辑
请注意,即使在中等大小的 DTM 上,矩阵也会变得巨大。以下是 vegan 包的示例。注意求解 4 分钟,因为余弦相似度约为 5 秒。
library(qdap); library(quanteda);library(vegan);library(slam)
x <- quanteda::convert(quanteda::dfm(rep(pres_debates2012$dialogue), stem = FALSE,
verbose = FALSE, removeNumbers = FALSE), to = 'tm')
## <<DocumentTermMatrix (documents: 2912, terms: 3368)>>
## Non-/sparse entries: 37836/9769780
## Sparsity : 100%
## Maximal term length: 16
## Weighting : term frequency (tf)
tic <- Sys.time()
jaccard_dist_mat <- vegan::vegdist(as.matrix(x), method = 'jaccard')
Sys.time() - tic #Time difference of 4.01837 mins
tic <- Sys.time()
tdm <- t(x)
cosine_dist_mat <- 1 - crossprod_simple_triplet_matrix(tdm)/(sqrt(col_sums(tdm^2) %*% t(col_sums(tdm^2))))
Sys.time() - tic #Time difference of 5.024992 secs
最佳答案
Jaccard 度量是 SETS 之间的度量,输入矩阵应为二进制。 very first line说:
## common values:
A = tcrossprod(m)
在词袋DTM
的情况下,这不是公共(public)值的数量!
library(text2vec)
library(magrittr)
library(Matrix)
jaccard_similarity <- function(m) {
A <- tcrossprod(m)
im <- which(A > 0, arr.ind=TRUE, useNames = F)
b <- rowSums(m)
Aim <- A[im]
sparseMatrix(
i = im[,1],
j = im[,2],
x = Aim / (b[im[,1]] + b[im[,2]] - Aim),
dims = dim(A)
)
}
jaccard_distance <- function(m) {
1 - jaccard_similarity(m)
}
cosine <- function(m) {
m_normalized <- m / sqrt(rowSums(m ^ 2))
tcrossprod(m_normalized)
}
基准:
data("movie_review")
tokens <- movie_review$review %>% tolower %>% word_tokenizer
dtm <- create_dtm(itoken(tokens), hash_vectorizer(hash_size = 2**16))
dim(dtm)
# 5000 65536
system.time(dmt_cos <- cosine(dtm))
# user system elapsed
# 2.524 0.169 2.693
system.time( {
dtm_binary <- transform_binary(dtm)
# or simply
# dtm_binary <- sign(dtm)
dtm_jac <- jaccard_similarity(dtm_binary)
})
# user system elapsed
# 11.398 1.599 12.996
max(dtm_jac)
# 1
dim(dtm_jac)
# 5000 5000
编辑 2016-07-01:
查看更快的版本 text2vec 0.4 (~2.85x 当不需要从 dgCMatrix
转换为 dgTMatrix
时,~1.75x 当需要列专业 dgCMatrix
)
jaccard_dist_text2vec_04 <- function(x, y = NULL, format = 'dgCMatrix') {
if (!inherits(x, 'sparseMatrix'))
stop("at the moment jaccard distance defined only for sparse matrices")
# union x
rs_x = rowSums(x)
if (is.null(y)) {
# intersect x
RESULT = tcrossprod(x)
rs_y = rs_x
} else {
if (!inherits(y, 'sparseMatrix'))
stop("at the moment jaccard distance defined only for sparse matrices")
# intersect x y
RESULT = tcrossprod(x, y)
# union y
rs_y = rowSums(y)
}
RESULT = as(RESULT, 'dgTMatrix')
# add 1 to indices because of zero-based indices in sparse matrices
# 1 - (...) because we calculate distance, not similarity
RESULT@x <- 1 - RESULT@x / (rs_x[RESULT@i + 1L] + rs_y[RESULT@j + 1L] - RESULT@x)
if (!inherits(RESULT, format))
RESULT = as(RESULT, format)
RESULT
}
system.time( {
dtm_binary <- transform_binary(dtm)
dtm_jac <-jaccard_dist(dtm_binary, format = 'dgTMatrix')
})
# user system elapsed
# 4.075 0.517 4.593
system.time( {
dtm_binary <- transform_binary(dtm)
dtm_jac <-jaccard_dist(dtm_binary, format = 'dgCMatrix')
})
# user system elapsed
# 6.571 0.939 7.516
关于r - 高效的jaccard相似度DocumentTermMatrix,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36220585/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!