gpt4 book ai didi

scala - 如何将 JSON 的 RDD 转换为 Dataframe?

转载 作者:行者123 更新时间:2023-12-02 00:40:50 25 4
gpt4 key购买 nike

我有一个从一些 JSON 创建的 RDD,RDD 中的每条记录都包含键/值对。我的 RDD 看起来像:

myRdd.foreach(println)
{"sequence":89,"id":8697344444103393,"trackingInfo":{"location":"Browse","row":0,"trackId":14170286,"listId":"cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585","videoId":80000778,"rank":0,"requestId":"ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171"},"type":["Play","Action","Session"],"time":527636408955},1],
{"sequence":153,"id":8697389197662617,"trackingInfo":{"location":"Browse","row":0,"trackId":14170286,"listId":"cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585","videoId":80000778,"rank":0,"requestId":"ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171"},"type":["Play","Action","Session"],"time":527637852762},1],
{"sequence":155,"id":8697389381205360,"trackingInfo":{"location":"Browse","row":0,"trackId":14170286,"listId":"cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585","videoId":80000778,"rank":0,"requestId":"ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171"},"type":["Play","Action","Session"],"time":527637858607},1],
{"sequence":136,"id":8697374208897843,"trackingInfo":{"location":"Browse","row":0,"trackId":14170286,"listId":"cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585","videoId":80000778,"rank":0,"requestId":"ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171"},"type":["Play","Action","Session"],"time":527637405129},1],
{"sequence":189,"id":8697413135394406,"trackingInfo":{"row":0,"trackId":14272744,"requestId":"284929d9-6147-4924-a19f-4a308730354c-3348447","rank":0,"videoId":80075830,"location":"PostPlay\/Next"},"type":["Play","Action","Session"],"time":527638558756},1],
{"sequence":130,"id":8697373887446384,"trackingInfo":{"location":"Browse","row":0,"trackId":14170286,"listId":"cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585","videoId":80000778,"rank":0,"requestId":"ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171"},"type":["Play","Action","Session"],"time":527637394083}]

我想将每条记录转换为 spark 数据帧中的一行,trackingInfo 中的嵌套字段应该有自己的列,type 列表也应该有自己的列。

到目前为止,我已经厌倦了使用案例类来拆分它:

case class Event(
sequence: String,
id: String,
trackingInfo:String,
location:String,
row:String,
trackId: String,
listrequestId: String,
videoId:String,
rank: String,
requestId: String,
`type`:String,
time: String)

val dataframeRdd = myRdd.map(line => line.split(",")).
map(array => Event(
array(0).split(":")(1),
array(1).split(":")(1),
array(2).split(":")(1),
array(3).split(":")(1),
array(4).split(":")(1),
array(5).split(":")(1),
array(6).split(":")(1),
array(7).split(":")(1),
array(8).split(":")(1),
array(9).split(":")(1),
array(10).split(":")(1),
array(11).split(":")(1)
))

但是我不断收到 java.lang.ArrayIndexOutOfBoundsException: 1 错误。

最好的方法是什么?如您所见,第 5 条记录在某些属性的排序上略有不同。是否可以根据属性名称进行解析,而不是根据“,”等进行拆分

我正在使用 Spark 1.6.x

最佳答案

您的 json rdd 似乎无效 jsons。您需要将它们转换为有效的 jsons as

val validJsonRdd = myRdd.map(x => x.replace(",1],", ",").replace("}]", "}"))

然后您可以使用 sqlContext 将有效的 rdd jsons 读取到 dataframe 中作为

val df = sqlContext.read.json(validJsonRdd)

它应该给你数据框(我使用了你在问题中提供的无效 json)

+----------------+--------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+-----------------------+
|id |sequence|time |trackingInfo |type |
+----------------+--------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+-----------------------+
|8697344444103393|89 |527636408955|[cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585,Browse,0,ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171,0,14170286,80000778]|[Play, Action, Session]|
|8697389197662617|153 |527637852762|[cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585,Browse,0,ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171,0,14170286,80000778]|[Play, Action, Session]|
|8697389381205360|155 |527637858607|[cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585,Browse,0,ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171,0,14170286,80000778]|[Play, Action, Session]|
|8697374208897843|136 |527637405129|[cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585,Browse,0,ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171,0,14170286,80000778]|[Play, Action, Session]|
|8697413135394406|189 |527638558756|[null,PostPlay/Next,0,284929d9-6147-4924-a19f-4a308730354c-3348447,0,14272744,80075830] |[Play, Action, Session]|
|8697373887446384|130 |527637394083|[cd7c2c7a-00f6-4035-867f-d1dd7d89972d_6625365X3XX1505943605585,Browse,0,ac12f4e1-5644-46af-87d1-ec3b92ce4896-4071171,0,14170286,80000778]|[Play, Action, Session]|
+----------------+--------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+-----------------------+

数据框的模式是

root
|-- id: long (nullable = true)
|-- sequence: long (nullable = true)
|-- time: long (nullable = true)
|-- trackingInfo: struct (nullable = true)
| |-- listId: string (nullable = true)
| |-- location: string (nullable = true)
| |-- rank: long (nullable = true)
| |-- requestId: string (nullable = true)
| |-- row: long (nullable = true)
| |-- trackId: long (nullable = true)
| |-- videoId: long (nullable = true)
|-- type: array (nullable = true)
| |-- element: string (containsNull = true)

希望回答对你有帮助

关于scala - 如何将 JSON 的 RDD 转换为 Dataframe?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46809562/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com