gpt4 book ai didi

julia - 分阶段编程——Jake Bolewski 的演讲

转载 作者:行者123 更新时间:2023-12-02 00:39:55 28 4
gpt4 key购买 nike

版本:从 Julia v0.4 开始(我使用 0.5.0-dev+433 (2015-09-29 15:39 UTC))

引用:Jake Bolewski: Staged programming in Julia

问题:在观看了 Jakes Bolewski 关于 StaticVec 的演讲后,我没有理解 length 函数示例背后的想法。

julia> type StaticVec{T,N}
vals::Vector{T}
end

julia> StaticVec(T,vals...) = StaticVec{T,length(vals)}([vals...])
StaticVec{T,N}

julia> v= StaticVec(Float64,1,2,3)
StaticVec{Float64,3}([1.0,2.0,3.0])

非分阶段长度:

julia> function Base.length{T,N}(v::StaticVec{T,N}) 
N
end
length (generic function with 58 methods)

julia> code_llvm(length, (StaticVec{Float64,3},))

define i64 @julia_length_21889(%jl_value_t*) {
top:
ret i64 3
}

和分阶段长度版本

julia> @generated function Base.length{T,N}(v::StaticVec{T,N}) 
:(N)
end
length (generic function with 58 methods)

julia> code_llvm(length, (StaticVec{Float64,3},))

define i64 @julia_length_21888(%jl_value_t*) {
top:
ret i64 3
}

给出相同的llvm代码。

我想我理解分阶段编程背后的想法,但在这个特定的例子中我不明白说话者的意图。谁能给我解释一下吗?

最佳答案

该示例可能不是最佳选择,因为正如您所指出的,它根本不需要生成的函数。陈嘉豪最近写了一篇blog post有一个使用生成函数进行有效数据平滑的出色示例。下面是一段与他类似的代码,它通过剥离前面和后面的 M 循环迭代来进一步提高效率,从而避免主循环体中的分支:

immutable SavitzkyGolayFilter{M,N} end

wrapL(i, n) = ifelse(1 ≤ i, i, i + n)
wrapR(i, n) = ifelse(i ≤ n, i, i - n)

@generated function smooth!{M,N}(
::Type{SavitzkyGolayFilter{M,N}},
data::AbstractVector,
smoothed::AbstractVector,
)
# compute filter coefficients from the Jacobian
J = Float64[(i-M-1)^(j-1) for i = 1:2M+1, j = 1:N+1]
e₁ = [1; zeros(N)]
C = J' \ e₁

# generate code to evaluate filter on data matrix
pre = :(for i = 1:$M end)
main = :(for i = $(M+1):n-$M end)
post = :(for i = n-$(M-1):n end)
for loop in (pre, main, post)
body = loop.args[2].args
push!(body, :(x = $(C[M+1]) * data[i]))
for j = reverse(1:M)
idx = loop !== pre ? :(i-$j) : :(wrapL(i-$j,n))
push!(body, :(x += $(C[M+1-j]) * data[$idx]))
end
for j = 1:M
idx = loop !== post ? :(i+$j) : :(wrapR(i+$j,n))
push!(body, :(x += $(C[M+1+j]) * data[$idx]))
end
push!(body, :(smoothed[i] = x))
end
quote
n = length(data)
n == length(smoothed) || throw(DimensionMismatch())
@inbounds $pre; @inbounds $main; @inbounds $post
return smoothed
end
end

smooth{S<:SavitzkyGolayFilter,T}(::Type{S}, data::AbstractVector{T}) =
smooth!(S, data, Vector{typeof(1.0*one(T))}(length(data)))

例如,为 smooth(SavitzkyGolayFilter{3,4}, rand(1000)) 生成的代码如下:

n = length(data)
n == length(smoothed) || throw(DimensionMismatch())
@inbounds for i = 1:3
x = 0.5670995670995674 * data[i]
x += 0.02164502164502159 * data[wrapL(i - 3, n)]
x += -0.1298701298701297 * data[wrapL(i - 2, n)]
x += 0.32467532467532445 * data[wrapL(i - 1, n)]
x += 0.32467532467532473 * data[i + 1]
x += -0.12987012987013022 * data[i + 2]
x += 0.021645021645021724 * data[i + 3]
smoothed[i] = x
end
@inbounds for i = 4:n-3
x = 0.5670995670995674 * data[i]
x += 0.02164502164502159 * data[i - 3]
x += -0.1298701298701297 * data[i - 2]
x += 0.32467532467532445 * data[i - 1]
x += 0.32467532467532473 * data[i + 1]
x += -0.12987012987013022 * data[i + 2]
x += 0.021645021645021724 * data[i + 3]
smoothed[i] = x
end
@inbounds for i = n-2:n
x = 0.5670995670995674 * data[i]
x += 0.02164502164502159 * data[i - 3]
x += -0.1298701298701297 * data[i - 2]
x += 0.32467532467532445 * data[i - 1]
x += 0.32467532467532473 * data[wrapR(i + 1, n)]
x += -0.12987012987013022 * data[wrapR(i + 2, n)]
x += 0.021645021645021724 * data[wrapR(i + 3, n)]
smoothed[i] = x
end
return smoothed

正如您想象的那样,这会生成非常高效的机器代码。我希望这能在一定程度上澄清生成函数的概念。

关于julia - 分阶段编程——Jake Bolewski 的演讲,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33700715/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com