- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一句话“你可以说他们经常洗个澡,这增加了他们的兴奋和生活乐趣。”我无法像以下示例:
(ROOT (S (NP (PRP You)) (VP (MD could) (VP (VB say) (SBAR (IN that) (S (NP (PRP they)) (ADVP (RB regularly)) (VP (VB catch) (NP (NP (DT a) (NN shower)) (, ,) (SBAR (WHNP (WDT which)) (S (VP (VBZ adds) (PP (TO to) (NP (NP (PRP$ their) (NN exhilaration)) (CC and) (NP (FW joie) (FW de) (FW vivre))))))))))))) (. .)))
我想复制这个问题的解决方案 https://stackoverflow.com/a/39320379但我有一个字符串句子而不是 NLP 树。
顺便说一句,我正在使用 python 3
最佳答案
使用 Tree.fromstring()
方法:
>>> from nltk import Tree
>>> parse = Tree.fromstring('(ROOT (S (NP (PRP You)) (VP (MD could) (VP (VB say) (SBAR (IN that) (S (NP (PRP they)) (ADVP (RB regularly)) (VP (VB catch) (NP (NP (DT a) (NN shower)) (, ,) (SBAR (WHNP (WDT which)) (S (VP (VBZ adds) (PP (TO to) (NP (NP (PRP$ their) (NN exhilaration)) (CC and) (NP (FW joie) (FW de) (FW vivre))))))))))))) (. .)))')
>>> parse
Tree('ROOT', [Tree('S', [Tree('NP', [Tree('PRP', ['You'])]), Tree('VP', [Tree('MD', ['could']), Tree('VP', [Tree('VB', ['say']), Tree('SBAR', [Tree('IN', ['that']), Tree('S', [Tree('NP', [Tree('PRP', ['they'])]), Tree('ADVP', [Tree('RB', ['regularly'])]), Tree('VP', [Tree('VB', ['catch']), Tree('NP', [Tree('NP', [Tree('DT', ['a']), Tree('NN', ['shower'])]), Tree(',', [',']), Tree('SBAR', [Tree('WHNP', [Tree('WDT', ['which'])]), Tree('S', [Tree('VP', [Tree('VBZ', ['adds']), Tree('PP', [Tree('TO', ['to']), Tree('NP', [Tree('NP', [Tree('PRP$', ['their']), Tree('NN', ['exhilaration'])]), Tree('CC', ['and']), Tree('NP', [Tree('FW', ['joie']), Tree('FW', ['de']), Tree('FW', ['vivre'])])])])])])])])])])])])]), Tree('.', ['.'])])])
>>> parse.pretty_print()
ROOT
|
S
______________________________________________________|_____________________________________________________________
| VP |
| ____|___ |
| | VP |
| | ___|____ |
| | | SBAR |
| | | ____|_______ |
| | | | S |
| | | | _______|____________ |
| | | | | | VP |
| | | | | | ____|______________ |
| | | | | | | NP |
| | | | | | | __________|__________ |
| | | | | | | | | SBAR |
| | | | | | | | | ____|____ |
| | | | | | | | | | S |
| | | | | | | | | | | |
| | | | | | | | | | VP |
| | | | | | | | | | ____|____ |
| | | | | | | | | | | PP |
| | | | | | | | | | | ____|_____________________ |
| | | | | | | | | | | | NP |
| | | | | | | | | | | | ________________|________ |
NP | | | NP ADVP | NP | WHNP | | NP | NP |
| | | | | | | ___|____ | | | | ____|_______ | ____|____ |
PRP MD VB IN PRP RB VB DT NN , WDT VBZ TO PRP$ NN CC FW FW FW .
| | | | | | | | | | | | | | | | | | | |
You could say that they regularly catch a shower , which adds to their exhilaration and joie de vivre .
关于parsing - 如何使用 nltk 或 spacy 从带括号的解析字符串中获取解析 NLP 树对象?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49371180/
我有一段文本和索引条目,其中一些指示出现在文本中的重要多词表达 (MWE)(例如生物学文本的“海绵骨”)。我想使用这些条目在 spaCy 中构建自定义匹配器,以便我可以识别文本中出现的 MWE。一个附
我想在 Spacy 中使用德语 lemmatizer,但我对结果感到非常惊讶: import spacy nlp = spacy.load("de_dep_news_trf") [token.lemm
要将我的句子拆分为标记,我正在执行以下操作,这很慢 import spacy nlp = spacy.load("en_core_web_lg") text = "This is a test.
我已经使用空间很长一段时间了,我真的很喜欢这种置换 有没有一种方法可以让我们在网页中从我的数据集中提供多个文本,如一个小箭头,以重定向到下一条记录并标记实体。 我使用的代码如下。 def valida
我有变量 trainData它具有以下简化格式。 [ ('Paragraph_A', {"entities": [(15, 26, 'DiseaseClass'), (443, 449, 'Disea
我正在尝试测试在另一台计算机上运行的模型,但是当我尝试将其导入我的笔记本时,出现以下错误:ModuleNotFoundError:没有名为“spacy.pipeline.pipes”的模块; 'spa
我正在尝试测试在另一台计算机上运行的模型,但是当我尝试将其导入我的笔记本时,出现以下错误:ModuleNotFoundError:没有名为“spacy.pipeline.pipes”的模块; 'spa
当处理数百万文档并将它们保存为空间文档以供以后使用(更多处理、可视化、提取特征)时,一种明显的扩展解决方案是并行/分布式处理。这意味着每个并行进程都将拥有自己的 Vocab,这些 Vocab 可能会随
我正在使用 Spacy 大型模型,但它错误地使用与我的领域无关的类别标记实体,例如“艺术作品”可能导致它无法识别本应属于组织的内容。 是否可以限制 NER 仅返回人员、位置和组织? 最佳答案 简答:
我正在像这样使用 SpaCy 创建一个短语匹配器: import spacy from spacy.matcher import PhraseMatcher nlp = spacy.load("en"
我正在尝试使用 spaCy Matcher 工作获得以下简单示例: import en_core_web_sm from spacy.matcher import Matcher nlp = en_c
它没有出现在 pip list zeke$ pip list | grep spacy spacy (1.7.3) 如何获取模型名称? 我试过了,还是不行 echo "spaCy model:" py
我在 "Training an additional entity type" 中有新 NER 类型的训练数据spaCy 文档的部分。 TRAIN_DATA = [ ("Horses are
给定一个 token ,它是具有多个 token 的命名实体的一部分,是否有直接方法来获取该实体的跨度? 例如,考虑这个有两个词命名实体的句子: >>> doc = nlp("This year wa
如何限制 Spacy 使用的 CPU 数量? 我想从大量句子中提取词性和命名实体。由于 RAM 的限制,我首先使用 Python NLTK 将我的文档解析为句子。然后我遍历我的句子并使用 nlp.pi
显然 for doc in nlp.pipe(sequence) 比运行 for el in order: doc = nlp(el) .. 我遇到的问题是我的序列实际上是一个元组序列,其中包含用于将
显然 for doc in nlp.pipe(sequence) 比运行 for el in order: doc = nlp(el) .. 我遇到的问题是我的序列实际上是一个元组序列,其中包含用于将
我已经下载了 spaCy,但每次尝试 nlp = spacy.load("en_core_web_lg") 命令时,我都会收到此错误: OSError:[E050] 找不到模型“en_core_web
到目前为止,我一直在使用 spacy 2.3.1,并为我的自定义语言类(class)训练并保存了几个管道。但是现在使用 spacy 3.0 和 spacy.load('model-path') 我遇到
我安装了 spacy 使用 python3 install spacy 并使用下载了两个英文模型 python3 -m spacy download en 和 python3 -m spacy dow
我是一名优秀的程序员,十分优秀!