gpt4 book ai didi

c# - 如何将一组节点划分为子集,每个子​​集形成有向无环图

转载 作者:行者123 更新时间:2023-12-02 00:28:21 26 4
gpt4 key购买 nike

在 C# 项目中,我有一组要执行的测试。每个测试都有自己依赖的测试集合。测试网络需要形成有向无环图 (DAG)。

使用符号 A -> B -> C,其中 A、B、C 代表测试,然后

C依赖于B,B 依赖于 A。

我已经有一个算法可以对测试进行排序,这样我就可以按顺序处理它们,从而尊重所有依赖关系。也就是说,顺序意味着在为整个图评估测试本身之前先评估每个测试的依赖项。

我想要的是一种算法,它首先进行一组测试,然后可以将它们划分为单独的 DAG 图(如果存在)。每个 DAG 中的测试不需要排序,因为可以单独完成。这样做的原因是我可以将每个独立的 DAG 作为一个单独的任务运行,并通过这种方式获得一些效率。

因此,考虑一组测试 A、B、C、D、E、F,其依赖项是:

A -> B -> C

D -> C

E -> F

从算法中我想要 2 组测试,

Set 1) A,B,C,D

Set 2) E,F

更新:帮助向 Eric 请求的 C# 代码。

    public class Graph
{
private List<Node> _nodes = new List<Node>();

public IReadOnlyList<Node> Nodes => _nodes;

public void AddNode(Node node)
{
_nodes.Add(node);
}

public void RemoveRange(IEnumerable<Node> nodes)
{
foreach (var item in nodes)
{
_nodes.Remove(item);
}
}
}

public class Node
{
public Node(string name)
{
Name = name;
}

private List<Node> _dependants = new List<Node>();

public string Name { get; private set; }

public IReadOnlyList<Node> Dependents => _dependants;

public void AddDependent(Node node)
{
_dependants.Add(node);
}
}

public class Set
{
private List<Node> _elements = new List<Node>();

public void AddRange(IEnumerable<Node> nodes)
{
_elements = new List<Node>(nodes);
}

public IReadOnlyList<Node> Elements => _elements;
}

internal class Program
{
private static void Main(string[] args)
{
List<Set> sets = new List<Set>();

var graph = new Graph();

var a = new Node("A");
var b = new Node("B");
var c = new Node("C");
var d = new Node("D");
var e = new Node("E");
var f = new Node("F");

graph.AddNode(a);
graph.AddNode(b);
graph.AddNode(c);
graph.AddNode(d);
graph.AddNode(e);
graph.AddNode(f);

c.AddDependent(b);
b.AddDependent(a);
c.AddDependent(d);
f.AddDependent(e);

while (graph.Nodes.Count > 0)
{
var set = new Set();

var pickNode = graph.Nodes[0];

// Get reachable nodes
// 1. NOT SURE WHAT YOU MEAN HERE AND HOW TO DO THIS IN C#
// 2. ALSO, DOES THE SET INCLUDE THE PICKED NODE?
}
}
}

更新 2:

排序节点的代码示例

    private enum MarkType
{
None,
Permanent,
Temporary
}

private static IEnumerable<T> GetSortedNodes<T>(DirectedGraph<T> directedGraph)
{
List<T> L = new List<T>();

var allNodes = directedGraph.Nodes();

Dictionary<T, (MarkType, T)> nodePairDictionary = allNodes.ToDictionary(n => n, n => (MarkType.None, n));

foreach (var node in allNodes)
{
var nodePair = nodePairDictionary[node];
Visit(nodePair);
}

return L.Reverse<T>().ToList();

void Visit((MarkType markType, T node) nodePair)
{

if (nodePair.markType == MarkType.Permanent)
{
return;
}

if (nodePair.markType == MarkType.Temporary)
{
throw new Exception("NOT A DAG");
}

nodePair.markType = MarkType.Temporary;

foreach (var dependentNode in directedGraph.Edges(nodePair.node))
{
var depNodePair = nodePairDictionary[dependentNode];
Visit(depNodePair);
}

nodePair.markType = MarkType.Permanent;

L.Insert(0, nodePair.node);
}

}

最佳答案

pniederh 的答案给出了联合查找算法的一个(有点过于复杂的)版本;正如我在评论中指出的那样,有很多关于如何使这些算法高效的研究。

在您的特定情况下,另一种有效的算法是:

  • 创建一个表示无向图的类型。
  • 向表示每个任务的图表添加一个节点。
  • 向图中添加一条边——请记住,它是无向的——代表每个依赖项。
  • 创建集合列表。
  • 图中有节点吗?如果不是,那么你就完成了,结果就是集合列表。
  • 从图中选择任何节点。
  • 在该节点上运行图形遍历并累积可达节点集。
  • 将该集合粘贴到列表中。
  • 从图中删除该集合中的所有节点。
  • 返回检查图中的节点。

完成后,您将得到一个集合列表,其中每个集合都包含彼此具有某种直接或间接依赖关系的任务,并且每个任务都恰好出现在一个集合中。这是由对称依赖等价关系引入的一组等价类


更新:还有一些关于如何实现这一点的其他问题。

这是一个简单但不是特别有效的实现。这里的想法是从更简单的数据结构构建越来越复杂的数据结构。

我首先要的是多词典。普通字典从键映射到值。我想要一个从键到一组值的映射。我们可以通过 NuGet 下载任意数量的实现,但编写我们自己的基本实现是快速且容易的:

public class MultiDictionary<K, V>
{
private readonly Dictionary<K, HashSet<V>> d = new Dictionary<K, HashSet<V>>();
public void Add(K k, V v)
{
if (!d.ContainsKey(k)) d.Add(k, new HashSet<V>());
d[k].Add(v);
}
public void Remove(K k, V v)
{
if (d.ContainsKey(k))
{
d[k].Remove(v);
if (d[k].Count == 0) d.Remove(k);
}
}
public void Remove(K k) => d.Remove(k);
public IEnumerable<V> GetValues(K k) => d.ContainsKey(k) ? d[k] : Enumerable.Empty<V>();
public IEnumerable<K> GetKeys() => d.Keys;
}

我希望你同意这是一个简单的抽象数据类型。

一旦我们有了多字典,我们就非常接近于有向图了。但是,我们不能将这个多字典用作有向图,因为它不代表没有出边的图节点的概念。因此,让我们构建一个使用多字典的简单有向图类型:

public class DirectedGraph<T>
{
private readonly HashSet<T> nodes = new HashSet<T>();
private readonly MultiDictionary<T, T> edges = new MultiDictionary<T, T>();
public void AddNode(T node) => nodes.Add(node);
public void AddEdge(T n1, T n2)
{
AddNode(n1);
AddNode(n2);
edges.Add(n1, n2);
}
public void RemoveEdge(T n1, T n2) => edges.Remove(n1, n2);
public void RemoveNode(T n)
{
// TODO: This algorithm is very inefficient if the graph is
// TODO: large; can you think of ways to improve it?
// Remove the incoming edges
foreach (T n1 in nodes)
RemoveEdge(n1, n);
// Remove the outgoing edges
foreach (T n2 in edges.GetValues(n).ToList())
RemoveEdge(n, n2);
// The node is now isolated; remove it.
nodes.Remove(n);
}
public IEnumerable<T> Edges(T n) => edges.GetValues(n);
public IEnumerable<T> Nodes() => nodes.Select(x => x);
public HashSet<T> ReachableNodes(T n) { ??? }
// We'll come back to this one!
}

这里有一些微妙之处;你明白我为什么使用 ToListSelect 了吗?

好的,我们现在有一个有向图来表示我们的依赖图。我们的算法需要一个无向图。但制作无向图最简单的方法是制作有向图,只需成对添加和删除边!

public class UndirectedGraph<T>
{
private readonly DirectedGraph<T> g = new DirectedGraph<T>();
public void AddNode(T node) => g.AddNode(node);
public void AddEdge(T n1, T n2)
{
g.AddEdge(n1, n2);
g.AddEdge(n2, n1);
}
public void RemoveEdge(T n1, T n2)
{
g.RemoveEdge(n1, n2);
g.RemoveEdge(n2, n1);
}
public void RemoveNode(T n) => g.RemoveNode(n);
public IEnumerable<T> Edges(T n) => g.Edges(n);
public IEnumerable<T> Nodes() => g.Nodes();
}

super 棒。为了使转换更容易,让我们向有向图添加一个辅助方法:

public UndirectedGraph<T> ToUndirected()
{
var u = new UndirectedGraph<T>();
foreach (T n1 in nodes)
{
u.AddNode(n1);
foreach (T n2 in Edges(n1))
u.AddEdge(n1, n2);
}
return u;
}

现在,我们算法的关键是能够获得给定节点的可达节点集。我希望你同意到目前为止一切都很简单。这是棘手的一点:

public HashSet<T> ReachableNodes(T n)
{
var reachable = new HashSet<T>();
if (nodes.Contains(n))
{
var stack = new Stack<T>();
stack.Push(n);
while (stack.Count > 0)
{
var current = stack.Pop();
if (!reachable.Contains(current))
{
reachable.Add(current);
foreach (T n2 in Edges(current))
stack.Push(n2);
}
}
}
return reachable;
}

这是有向图的深度优先遍历,它检测循环并返回给定节点的传递闭包。 仔细研究这个算法,因为它是理解的关键

我们将向我们的无向图中添加一个辅助方法:

public HashSet<T> ReachableNodes(T n) => g.ReachableNodes(n);

现在我们拥有了制作算法所需的所有部分。我们只是将我给出的算法描述直接翻译成代码:

static IEnumerable<HashSet<T>> GetEquivalenceClasses<T>(DirectedGraph<T> d)
{
var u = d.ToUndirected();
var results = new List<HashSet<T>>();
while (u.Nodes().Any())
{
T current = u.Nodes().First();
HashSet<T> reachable = u.ReachableNodes(current);
results.Add(reachable);
foreach (T n in reachable)
u.RemoveNode(n);
}
return results;
}

让我们试一试:

    var d = new DirectedGraph<string>();
d.AddEdge("A", "B");
d.AddEdge("B", "C");
d.AddEdge("D", "C");
d.AddEdge("E", "F");
foreach (var eq in GetEquivalenceClasses(d))
Console.WriteLine(string.Join(",", eq));

果然:

A,B,C,D
E,F

有道理吗?


更新:移除节点是代价高昂的部分,我刚刚意识到,我们不需要这样做。该算法的非破坏性版本是:

static IEnumerable<HashSet<T>> GetEquivalenceClasses<T>(DirectedGraph<T> d)
{
var u = d.ToUndirected();
var results = new List<HashSet<T>>();
var done = new HashSet<T>();
foreach(T current in u.Nodes())
{
if (done.Contains(current))
continue;
HashSet<T> reachable = u.ReachableNodes(current);
results.Add(reachable);
foreach(T n in reachable)
done.Add(n);
}
return results;
}

关于c# - 如何将一组节点划分为子集,每个子​​集形成有向无环图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52850826/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com